LONG-TIME ASYMPTOTICS FOR KDV AND TODA EQUATIONS WITH STEPLELIKE INITIAL PROFILE

I. EGOROVA

B. Verkin Institute for Low Temperature Physics, Kharkiv, Ukraine

The Cauchy problem

We are interested in the long-time asymptotic behaviour of the solution of the Korteweg - de Vries equation

\[q_t(x, t) = 6q(x, t)q_x(x, t) - q_{xxx}(x, t), \quad (x, t) \in \mathbb{R} \times \mathbb{R}_+, \]

with steplike initial profile \(q(x, 0) = q_0(x) \in C^n(\mathbb{R}) \):

\[
\begin{cases}
q_0(x) \to c_+, & \text{as } x \to +\infty, \\
q_0(x) \to c_-, & \text{as } x \to -\infty,
\end{cases}
\]

with

\[
\int_{\mathbb{R}_+} (1 + |x|^m)|q_0(\pm x) - c_\pm| \, dx < \infty, \quad m \geq 1.
\]
Without loss generality one can put $c_+ = 0$. If $c_- = -c^2$, $c \in \mathbb{R}$, we say about the shock problem for the KdV equation. The case $c_- = c^2$ is known as the rarefaction problem.

Initial data

$$q_0(x) = \begin{cases}
0, & x \geq 0, \\
\pm c^2, & x < 0,
\end{cases}$$

are called pure step ones.

Both shock and rarefaction problem are studied in the regime:

$$x \to \infty; \quad t \to +\infty; \quad \frac{x}{t} = O(1) \text{ as } t \to \infty.$$
Shock problem

Well understood on a physical level of rigor for pure step initial data (Gurevich/Pitaevskii '73, Bikbaev '89, Sharipov/Novokshenov '78, Leach/Needham '08):

- in the domain $x < -6c^2t$ the solution is asymptotically close to the background constant $-c^2$;
- in the domain $-6c^2t < x < 4c^2t$ the solution is described by the modulated elliptic wave (Whitham’s method);

Inverse scattering transform (IST), steplike initial data: Ermakova ’81:

- in the domain $4c^2t < x$ the solution is asymptotically close to the sum of solitons:

$$q(x, t) = -2 \sum_{j=1}^{N} \frac{\kappa_j^2}{\cosh^2(\kappa_j x - 4\kappa_j^3 t - p_j)} + O(t^{-1}).$$
Asymptotical solitons

Khruslov, ’76

In the domain $4c^2 t \geq x > 4c^2 t - (2c)^{-1} \ln t^{M+1}$ as $t \to +\infty$:

$$q(x, t) = \sum_{k=1}^{[M+1/2]} \frac{-2c^2}{\cosh^2\{c x - 4c^3 t + \frac{1}{2} \ln t^{2n-1/2} + \phi_k\}} + O(t^{-1/2+\varepsilon}),$$

where $\varepsilon > 0$ is arbitrary small and the phases ϕ_k are determined by the initial scattering data.
Figure: $t = 10$, $q(x, 0) = \frac{1}{2}(\text{erf}(x) - 1) - 5\text{sech}(x - 1)$.
Rarefaction problem

Well understood on the physical level of rigor for pure step initial data (Leach/Needham ’14, Zakharov/Manakov/Novikov/Pitaevskii ’80):

\[q(x, t) = c^2 + o(1) \text{ in the domain } x < -6c^2t; \]
\[q(x, t) = -\frac{x}{6t} + o(1) \text{ in the domain } -6c^2t < x < 0; \]
\[\text{For } x > 0 \text{ the solution is asymptotically close to the sum of solitons.} \]

Figure: \(t = 1.5, \quad q_0(x) = \frac{1}{2}(1 - \text{erf}(x)) - 4 \text{ sech}(x - 1). \)
Dispersion: rapidly decaying initial condition

Let us take the linear part of the KdV equation

\[q_t = -q_{xxx} + 6qq_x, \quad q(x, t = 0) = q_0(x) \rightarrow 0, \ x \rightarrow \pm \infty, \]

then the equation can be solved using the Fourier transform

\[q(x, t) = \int_{-\infty}^{\infty} \hat{q}_0(k) e^{i(kx + k^3 t)} \, dk = \int_{-\infty}^{\infty} \hat{q}_0(k) e^{t \Phi(k)} \, dk, \]

\[\hat{q}_0(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} q_0(x) e^{-ikx} \, dx. \]

where the phase is given by

\[\Phi(k) = i(ku + k^3), \quad u = \frac{x}{t}. \]

We are interested in the asymptotics as \(t \rightarrow \infty \) keeping the velocity \(u \) fixed. To this end we need to look at the stationary phase points

\[\Phi'(k) = 0 \quad \Rightarrow \quad k = \pm k_0, \ k_0 = \pm \sqrt{-\frac{u}{3}}. \]
Steepest descent

Assuming \(\hat{q}_0(k) \) admits an analytic continuation to some strip \(|\text{Im}(k)| < \epsilon \) we can deform the integration contour \(\mathbb{R} \to \Sigma \) into regions of the complex plane where the exponent \(e^{t\Phi(k)} \) decays exponentially as \(t \to \infty \). For \(u = \frac{x}{t} > 0 \) there are no stationary phase points on \(\mathbb{R} \) and we just shift the path of integration a bit up to obtain exponential decay:

\[
\begin{align*}
\text{Re}(\Phi) > 0 & \quad \text{Re}(\Phi) < 0 \\
\text{Re}(\Phi) < 0 & \quad \text{Re}(\Phi) > 0
\end{align*}
\]
Assuming \(\hat{q}_0(k) \) admits an analytic continuation to some strip \(|\text{Im}(k)| < \epsilon\) we can deform the integration contour \(\mathbb{R} \to \Sigma \) into regions of the complex plane where the exponent \(e^{t\Phi(k)} \) decays exponentially as \(t \to \infty \). For \(u = \frac{x}{t} > 0 \) there are no stationary phase points on \(\mathbb{R} \) and we just shift the path of integration a bit up to obtain exponential decay:
For \(u = \frac{x}{t} < 0 \) there are two stationary phase points \(\pm k_0 \in \mathbb{R} \) and we need to pass through them:

\[
\begin{align*}
\text{Re}(\Phi) &> 0 \\
\text{Re}(\Phi) &< 0 \\
\end{align*}
\]

\[
\begin{align*}
\text{Re}(\Phi) &< 0 \\
\text{Re}(\Phi) &> 0 \\
\end{align*}
\]
For \(u = \frac{x}{t} < 0 \) there are two stationary phase points \(\pm k_0 \in \mathbb{R} \) and we need to pass through them:

There is now a contribution of \(O(t^{-1/2}) \) from the two stationary phase points which can be computed by expanding around these points and explicitly evaluating the resulting integrals.
Solutions of the linearized KdV equation

Hence a typical solution of the linearized KdV equation with decaying initial condition splits into a slowly decaying dispersive tail to the left and a fast decaying part to the right. Below a numerically computed solution for \(q_0(x) = e^{-x^2} \) is shown:
Now let us look at the **nonlinear** part of the KdV equation

\[q_t = -q_{xxx} + 6qq_x, \quad q(x, t = 0) = q_0(x). \]

This is **inviscid Burgers’ equation** which can be solved using the method of characteristics. The wave packets will steepen until they break:

![Wave packets steepening and breaking](image)

It turns out that for KdV both effects balance each other and give rise to traveling wave solutions - solitons:
Rapidly decaying initial condition, numerics

Figure: \(t = 5, \ q(x, 0) = \text{sech}(x + 3) - 5\text{sech}(x - 1). \)

Long-time asymptotical analysis: Ablowitz/Newell '73, Shabat '73, Tanaka '73, Manakov '74, Ablowitz/Segur '77, Buslaev '81, Buslaev/Sukhanov '86, Deift/Venakides/Zhou '94, Grunert/Teschl '10.
The KdV equation is equivalent to the Lax equation

\[\frac{dL(t)}{dt} = L(t)A(t) - A(t)L(t), \]

where

\[L(t) = -\frac{\partial^2}{\partial x^2} + q(x, t), \]

\[A(t) = -4\frac{\partial^3}{\partial x^3} + 3 \left(q(x, t) \frac{\partial}{\partial x} + \frac{\partial}{\partial x} q(x, t) \right) \]
The initial value problem for the KdV equation can be solved via the inverse scattering transform:

\[q(x, 0) \] to \[q(x, t) \]

The long-time asymptotics can then be found via a nonlinear steepest descent analysis.
Consider the KdV equation with steplike initial data $q_0(x)$, and let the solution of the initial value problem satisfies

$$\int_0^\infty |x||q(x, t)| + |q(-x, t) \pm c^2|)dx < \infty, \quad \forall t \in \mathbb{R}.$$
Consider the KdV equation with steplike initial data $q_0(x)$, and let the solution of the initial value problem satisfies

$$\int_0^\infty |x|(|q(x, t)| + |q(-x, t) \pm c^2|)dx < \infty, \quad \forall t \in \mathbb{R}.$$

Rarefaction problem: $q_0(x) \to c^2$ as $x \to -\infty$.

Spectral picture for the Schrödinger operator

$$L(t) = \partial_x^2 + q(x, t):$$

\[
\begin{array}{cccccccc}
\bullet & \cdot \\
-\kappa_1^2 & \cdot \\
\end{array}
\]

$\Sigma^{(1)}$ $\Sigma^{(2)}$

\[
\begin{array}{cccccccc}
\bullet & \cdot \\
-\kappa_p^2 & \cdot \\
\end{array}
\]

0 c^2
The Schrödinger equation $L(t)\phi = k^2\phi$ has the Jost solutions:

$$
\lim_{x \to +\infty} e^{-ikx}\phi(k, x, t) = \lim_{x \to -\infty} e^{ik_1x}\phi_1(k, x, t) = 1, \quad \text{as } k \in \mathbb{C}^+.
$$

Here $k_1 = \sqrt{k^2 - c^2}$. They can be represented via the transformation operators:

$$
\phi(k, x, t) = e^{ikx} + \int_x^{+\infty} K(x, y, t)e^{iky} dy,
$$

$$
\phi_1(k, x, t) = e^{-ik_1x} + \int_{-\infty}^x K_1(x, y, t)e^{-ik_1y} dy,
$$

where

$$
|K(x, y, t)| \leq C \int_{\frac{x+y}{2}}^{\infty} |q(z, t)| dz, \quad K_1(x, y, t) | \leq C \int_{-\infty}^{\frac{x+y}{2}} |q(z, t) - c^2| dz.
$$

In particular, $\phi_1(k, x, t) \in \mathbb{R}$ as $k \in [-c, c]$.
The Jost solutions are connected by the scattering relations

\[T(k, t)\phi_1(k, x, t) = \phi(k, x, t) + R(k, t)\phi(k, x, t), \quad k \in \mathbb{R}, \]

\[T_1(k, t)\phi(k, x, t) = \phi_1(k, x, t) + R_1(k, t)\phi_1(k, x, t), \quad k \in \mathbb{R}\setminus[-c, c], \]

- \(T(k, t) \) and \(R(k, t) \) are the right transmission and reflection coefficients.
- The following representations are valid:

\[T(k, t) = \frac{2ik}{\langle \phi_1, \phi \rangle}, \quad R(k, t) = -\frac{\langle \phi_1, \bar{\phi} \rangle}{\langle \phi_1, \phi \rangle}, \]

where \(\langle f, g \rangle = fg_x - gf_x \) is the Wronskian.
Scattering matrix

- The Jost solutions are connected by the scattering relations
 \[T(k, t)\phi_1(k, x, t) = \phi(k, x, t) + R(k, t)\phi(k, x, t), \quad k \in \mathbb{R}, \]
 \[T_1(k, t)\phi(k, x, t) = \phi_1(k, x, t) + R_1(k, t)\phi_1(k, x, t), \quad k \in \mathbb{R}\setminus[-c, c], \]

- \(T(k, t) \) and \(R(k, t) \) are the right transmission and reflection coefficients.

- The following representations are valid:
 \[T(k, t) = \frac{2ik}{\langle \phi_1, \phi \rangle}, \quad R(k, t) = -\frac{\langle \phi_1, \bar{\phi} \rangle}{\langle \phi_1, \phi \rangle}, \]

where \(\langle f, g \rangle = fg_x - gf_x \) is the Wronskian.

In particular, \(|R(k, t)| = 1\) as \(k \in [-c, c] \). \(R(0, t) = -1 \) corresponds to the non-resonant case, \(R(0, t) = 1 \) is the resonant case.
The solution $\phi(i\kappa_j, x, t) \in \mathbb{R}$ is an eigenfunction of $L(t)$. The value

$$
\gamma_j(t) = \left(\int_{\mathbb{R}} \phi^2(i\kappa_j, x, t) dx \right)^{-1},
$$

is called the right normalizing constant.

The solution $q(x, t)$ can be uniquely restored from the right scattering data

$$
S(L(t)) := \{ R(k, t), \ k \in \mathbb{R}; \ -\kappa_j^2, \ \gamma_j(t) > 0, \ j = 1, \ldots, N \}.
$$

The time evolution of the scattering data can be computed explicitly from the Lax equation:

$$
R(k, t) = R(k)e^{8ik^3t}, \quad T(k, t) = T(k)e^{4ik^3t - 4ik_1^3t + 6ic k_1 t},
$$

$$
\gamma_j(t) = \gamma_j e^{8\kappa_j^3t}.
$$

Here $R(k) = R(k, 0), \ \gamma_j = \gamma_j(0)$.
In \(\mathbb{C}^+ \) introduce the vector function

\[
m(k, x, t) = (T(k, t)\phi_1(k, x, t)e^{ikx}, \phi(k, x, t)e^{-ikx}).
\]

Then \(q(x, t) \) can be read off from \(m \) via

\[
m(k) = (1 \ 1) - \frac{1}{2ik} \int_x^{+\infty} q(y, t)dy (-1 \ 1) + O \left(\frac{1}{k^2} \right).
\]

Define \(m(k) \) in \(\mathbb{C}^- \) by use of the symmetry condition:

\[
m(k) = m(-k) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]
Theorem (no discrete spectrum)

The function \(m(k) \) is the unique solution of the following Riemann-Hilbert problem: to find a holomorphic in \(\mathbb{C} \setminus \mathbb{R} \) function \(m(k) \), which has continuous limits \(m_{\pm}(k) = m(k \pm i0), \ k \in \mathbb{R} \), and satisfies:

1. **the jump condition** \(m_+(k) = m_-(k)v(k) \), where

\[
v(k) := v(k, x, t) = \begin{pmatrix} 1 - |R(k)|^2 & -\overline{R(k)}e^{-2t\Phi(k)} \\ R(k)e^{2t\Phi(k)} & 1 \end{pmatrix}, \quad k \in \mathbb{R};
\]

2. **the symmetry condition**;

3. **the normalizing condition**

\[
m(k) = (1 \quad 1) + O(k^{-1}), \quad k \to \infty.
\]

Here **the phase function** is given by \(\Phi(k) = 4ik^3 + 12ik\xi \), where \(\xi = \frac{x}{12t} \).
Let $d(k)$ be a holomorphic function on $\mathbb{C} \setminus \Sigma$, where $\Sigma \subset \mathbb{R}$ is a symmetric with respect to the map $k \mapsto -k$ contour. If $d(-k) = d^{-1}(k)$ and $d(k) \to 1$, as $k \to \infty$, then the transformation

$$\tilde{m}(k) = m(k) \begin{pmatrix} d^{-1}(k) & 0 \\ 0 & d(k) \end{pmatrix}$$

preserves the symmetry and the normalization conditions.
Admissible transformations for RH problem

- Let $d(k)$ be a holomorphic function on $\mathbb{C} \setminus \Sigma$, where $\Sigma \subset \mathbb{R}$ is a symmetric with respect to the map $k \mapsto -k$ contour. If $d(-k) = d^{-1}(k)$ and $d(k) \to 1$, as $k \to \infty$, then the transformation

$$\tilde{m}(k) = m(k) \begin{pmatrix} d^{-1}(k) & 0 \\ 0 & d(k) \end{pmatrix}$$

preserves the symmetry and the normalization conditions.

- Let $\Omega^U \subset \mathbb{C}^+$ be a domain and let $\Omega^L \subset \mathbb{C}^-$ be symmetric with respect to the maps $k \mapsto -k$ and $k \mapsto \bar{k}$. The transformation

$$\tilde{m}(k) = m(k) \begin{cases} B_{U,L}(k), & k \in \Omega^{U,L}, \\
I, & \text{else}, \end{cases}$$

is admissible if

$$B_U(k) = \begin{pmatrix} 1 & a(k) \\ 0 & 1 \end{pmatrix}, \quad B_L(k) = \begin{pmatrix} 1 & 0 \\ a(-k) & 1 \end{pmatrix},$$

or vice versa, is admissible.
For \(k \in \mathbb{R} \setminus [-\sqrt{-\xi}, \sqrt{-\xi}] \), we factorize the jump matrix:

\[
\nu(k) = \begin{pmatrix} 1 & -R(k)e^{-2t\Phi(k)} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ R(k)e^{2t\Phi(k)} & 1 \end{pmatrix} = B_L \cdot B_U^{-1},
\]

\[
\text{Re } \Phi = 0
\]

Figure: Signature table for \(\text{Re } \Phi(k) \) as \(\xi < 0 \).
The lenses mechanizm

Put

\[m^{(1)}(k) = m(k) \begin{cases} B_U(k), & k \in \Omega^U; \\ B_L(k), & k \in \Omega^L; \end{cases} \]

Then \(m^{(1)}_+(k) = m^{(1)}_-(k) \nu^{(1)}(k) \), where for \(t \to \infty \)

\[\nu^{(1)}(k) = \begin{cases} \nu(k), & \left[-\sqrt{-\xi}, \sqrt{-\xi} \right], \\ \mathbb{I} + o(1), & k \in C^U \cup C^L. \end{cases} \]
"Lower - upper" factorization

On \(k \in [-\sqrt{-\xi}, \sqrt{-\xi}] \) we solve an auxiliary scalar RH problem

\[
d_+(k) = d_-(k)(1 - |R(k)|^2), \quad d(-k) = d^{-1}(k), \quad d(k) \to 1, \text{ as } k \to \infty,
\]

and put \(m^{(2)}(k) = m^{(1)}(k)d(k)^{\sigma_3} \), where \(\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \), then

\[
v^{(2)}(k) = \begin{pmatrix} 1 & 0 \\ \frac{d_-(k)^2R(k)e^{2t\Phi(k)}}{1-|R^2(k)|} & 1 \end{pmatrix} \begin{pmatrix} 0 & -\frac{d_+(k)^2R(k)e^{-2t\Phi(k)}}{1-|R^2(k)|} \\ 1 & 1 \end{pmatrix} = \tilde{B}_L\tilde{B}_U^{-1}.
\]
In the rarefaction wave case $|R(k)| = 1$ as $k \in [-c; c]$.

We study the region between the leading and the rear wave fronts,

$$\xi \in \left(-\frac{c^2}{2}, 0 \right).$$
Rarefaction problem, the ”g-function” approach

In the rarefaction wave case $|R(k)| = 1$ as $k \in [-c; c]$. We study the region between the leading and the rear wave fronts,

$$
\xi \in \left(-\frac{c^2}{2}, 0\right).
$$

Put $a(\xi) = \sqrt{-2\xi}$ and

$$
g(k) = g(k; \xi) = 4i(k^2 - a^2(\xi))\sqrt{k^2 - a^2(\xi)}.
$$

Then $a(\xi) \in [0, c]$ and

$$
\Phi(k) - g(k) = \frac{12\xi^2}{2ik}(1 + O(k^{-1})), \quad k \to \infty.
$$
\[\text{Figure: Signature tables for } \Re g \text{ and } \Re \Phi \text{ (dashed line)} \]
STEP 1. Put
\[m^{(1)}(k) = m(k)e^{-t(\Phi(k)-g(k))}\sigma_3, \]
where \(\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) - is the Pauli matrix. Then \(m^{(1)}_+ = m^{(1)}_\times \nu^{(1)} \), where
\[
\nu^{(1)}(k) = \begin{cases}
\begin{pmatrix} 0 & -\overline{R(k)} \\
R(k) & e^{-2tg_+(k)} \end{pmatrix}, & k \in [-a, a]; \\
\begin{pmatrix} 1 - |R(k)|^2 & -\overline{R(k)}e^{-2tg(k)} \\
R(k)e^{2tg(k)} & 1 \end{pmatrix}, & k \in \mathbb{R} \setminus [-a, a].
\end{cases}
\]

STEP 2. We perform the upper-lower factorization for \(\nu^{(1)}(k) \) as \(k \in \mathbb{R} \setminus [-a; a] \) as above, and apply the lenses mechanism. We get the RH problem for \(m^{(2)}(k) \) with
\[
\nu^{(2)}(k) = \begin{cases}
\begin{pmatrix} 0 & -\overline{R(k)} \\
R(k) & o(1) \end{pmatrix}, & k \in [-a, a]; \\
\mathbb{I} + o(1), & k \in C^L \cup C^U.
\end{cases}
\]
The scalar conjugation problem:

To find a holomorphic in \(\mathbb{C} \setminus [−a, a] \) function \(d(k) \), satisfying the jump

\[
d_+(k)d_-(k) = R^{-1}(0)R(k), \quad k \in [−a, a],
\]

the symmetry \(d(−k) = d^{-1}(k) \), and normalisation \(d(k) \to 1 \), as \(k \to \infty \).
The scalar conjugation problem:

To find a holomorphic in $\mathbb{C} \setminus [-a, a]$ function $d(k)$, satisfying the jump

$$d_+(k)d_-(k) = R^{-1}(0)R(k), \quad k \in [-a, a],$$

the symmetry $d(-k) = d^{-1}(k)$, and normalisation $d(k) \to 1$, as $k \to \infty$.

STEP 3. Setting $m^{(3)}(k) = m^{(2)}(k)d(k)^{-\sigma_3}$, we get

$$v^{(3)}(k) = \begin{cases}
\begin{pmatrix}
0 & -R(0) \\
R(0) & \frac{d_+(k)}{d_-(k)}e^{-2\tan(k_+)}
\end{pmatrix}, & k \in [-a, a]; \\
1 & 0 \\
d(k)^{-2}R(k)e^{2\tan(k)} & 1,
\end{cases}$$

$$v^{(3)}(k) = \begin{cases}
\begin{pmatrix}
1 & -d(k)^2R(-k)e^{-2\tan(k)} \\
0 & 1
\end{pmatrix}, & k \in \mathcal{C}^L.
\end{cases}$$

Here $R(0) = \pm 1$.
The model problem

To find a holomorphic in $\mathbb{C} \setminus [-a, a]$ vector function $m^{\text{mod}}(k)$, satisfying the jump

$$m^{\text{mod}}_+(k) = m^{\text{mod}}_-(k) \begin{pmatrix} 0 & -R(0) \\ R(0) & 0 \end{pmatrix}, \quad k \in [-a, a],$$

and the symmetry and normalization conditions:

$$m^{\text{mod}}(k) = m^{\text{mod}}(-k)\sigma_1; \quad m^{\text{mod}}(k) = (1, 1) + O(k^{-1}), \quad k \to \infty.$$

The matrix solution of the model problem:

$$M^{\text{mod}}(k) = \begin{pmatrix} \frac{\beta(k) + \beta^{-1}(k)}{2} & \frac{\beta(k) - \beta^{-1}(k)}{2i} \\ -\frac{\beta(k) - \beta^{-1}(k)}{2i} & \frac{\beta(k) + \beta^{-1}(k)}{2} \end{pmatrix}, \quad M^{\text{mod}}(k) \to \mathbb{I}, k \to \infty,$$

where

$$\beta(k) = \begin{cases} \sqrt[4]{\frac{k-a}{k+a}}, & \text{as } R(0) = -1 \text{ (non-resonant case)}; \\ \sqrt[4]{\frac{k+a}{k-a}}, & \text{as } R(0) = 1 \text{ (resonant case)}. \end{cases}$$
The solution of the model problem

The vector solution: \(m_{\text{mod}}(k) = (1, 1) M_{\text{mod}}(k) = \)

\[
= \frac{1}{2i} (\beta(k)(i - 1) + \beta^{-1}(k)(i + 1), \ \beta(k)(i + 1) + \beta^{-1}(k)(i - 1)).
\]

We prove that this solution approximates properly the solution of the initial RH problem for sufficiently large \(k \):

\[
m_1(k) = m_{1}^{(3)}(k) d(k) e^{t(\Phi(k) - g(k))} \sim m_{1}^{\text{mod}}(k) d(k) e^{t(\Phi(k) - g(k))}.
\]

Then from formula

\[
m(k) = (1 \ 1) - \frac{1}{2ik} \int_{x}^{+\infty} q(y, t) dy (-1 \ 1) + O \left(\frac{1}{k^2} \right)
\]

we compute

\[
q(x, t) = - \frac{\partial}{\partial x} \lim_{k \to \infty} 2ik (m_1(k, \xi, t) - 1).
\]
The rarefaction problem, results

Theorem (Andreiev/E/Lange/Teschl ’16)

For arbitrary small $\epsilon_j > 0$, $j = 1, 2, 3$, and for $\xi = \frac{x}{12t}$, the following asymptotics are valid as $t \to \infty$ uniformly with respect to ξ:

A. In the domain $(-6c^2 + \epsilon_1)t < x < -\epsilon_1 t$:

$$q(x, t) = -\frac{x + Q(\xi)}{6t}(1 + O(t^{-1/3})), \quad \text{as } t \to +\infty,$$

where

$$Q(\xi) = \frac{2}{\pi} \int_{-\sqrt{-2\xi}}^{\sqrt{-2\xi}} \left(\frac{d}{ds} \log R(s) - 4i \sum_{j=1}^{N} \frac{\kappa_j}{s^2 + \kappa_j^2} \right) \frac{ds}{\sqrt{s^2 + 2\xi}} \mp \frac{1}{2\sqrt{-2\xi}},$$

and \pm corresponds to resonant/nonresonant cases.
B. In the domain $x < (-6c^2 - \epsilon_2) t$ in the nonresonant case:

$$q(x, t) = c^2 + \sqrt{\frac{4\nu y}{3t}} \sin(16ty^3 - \nu \log(192ty^3) + \delta)(1 + o(1)),$$

where $y = y(\xi) = \sqrt{\frac{c^2}{2} - \xi}$, $\nu = \nu(\xi) = -\frac{1}{2\pi} \log (1 - |R(y)|^2)$ and

$$\delta(\xi) = -\frac{3\pi}{4} + \arg(R(y) - 2T(y) + \Gamma(i\nu))$$

$$- \frac{1}{\pi} \int_{\mathbb{R}\setminus[-y,y]} \log \left(\frac{1 - |R(s)|^2}{1 - |R(y)|^2} \right) \frac{s ds}{s^2 - c^2 - (\frac{c^2}{2} + \xi)^{1/2}(c^2 - s^2)^{1/2}}.$$

Here Γ is the Gamma-function.

C. In the domain $x > \epsilon_3 t$:

$$q(x, t) = -\sum_{j=1}^{N} \frac{2x_j^2}{\cosh^2 \left(x_j x - 4x_j^3 t - \frac{1}{2} \log \frac{\gamma_j(0)}{2x_j} - \sum_{i=j+1}^{N} \log \frac{x_i-x_j}{x_i+x_j} \right)} + O(e^{-\epsilon_3 t/2}).$$
The shock initial profile

\[q_t(x, t) = 6q(x, t)q_x(x, t) - q_{xxx}(x, t), \quad (x, t) \in \mathbb{R} \times \mathbb{R}_+, \]

\[q_0(x) \to \begin{cases}
0, & x \to +\infty, \\
-c^2, & x \to -\infty,
\end{cases} \]

\[\int_{0}^{+\infty} e^{C_0x}(|q_0(x)| + |q_0(-x) + c^2|)dx < \infty, \quad C_0 > c > 0. \]

The right scattering data, associated with the initial data:

\[\{ R(k), \quad k \in \mathbb{R}; \quad |T(k)|, \quad k \in [0, ic]; \quad -\kappa_1^2, \ldots, -\kappa_p^2, \quad \gamma_1, \ldots, \gamma_p. \} \]
Statement of the RH problem

We consider the same regime: \(x \to \infty, \ t \to \infty, \ \frac{x}{12t} = \xi \), the nonresonant case only.

Introduce

\[
m(k) = (T(k, t)\phi_1(k, x, t)e^{ikx}, \ \phi(k, x, t)e^{-ikx}), \ k \in \mathbb{C}^+ \setminus (0, ic].
\]

Define it in \(\mathbb{C}^- \) by the symmetry condition

\[
m(k) = m(-k) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]

Asymptotic behavior as \(k \to +i\infty \)

\[
m(k) = (1, 1) - \frac{1}{2ik} \left(\int_x^{+\infty} q(y, t)dy \right) (-1, 1) + O \left(\frac{1}{k^2} \right).
\]
Theorem

Function $m(k)$ is the unique solution of the following RH problem: To find a vector function $m(k)$, meromorphic away from $\mathbb{R} \cup [-ic, ic]$, with simple poles at points $\pm ik_j$, which satisfies:

- The jump condition $m_+(k) = m_-(k)v(k)$, where

$$
v(k) = \begin{cases}
\begin{pmatrix}
1 - |R(k)|^2 & -R(k)e^{-2t\Phi(k)} \\
R(k)e^{2t\Phi(k)} & 1
\end{pmatrix}, & k \in \mathbb{R}, \\
\begin{pmatrix}
1 & 0 \\
\chi(k)e^{2t\Phi(k)} & 1
\end{pmatrix}, & k \in [ic, 0), \\
\begin{pmatrix}
1 & \chi(k)e^{-2t\Phi(k)} \\
0 & 1
\end{pmatrix}, & k \in [0, -ic],
\end{cases}
$$

where $\chi(k) := -\sqrt{k^2 + c^2}/k |T(k)|^2$;
• the pole condition

\[\text{Res}_{i\kappa_j} m(k) = \lim_{k \to i\kappa_j} m(k) \begin{pmatrix} 0 & 0 \\ i\gamma_j^2 e^{2t\Phi(i\kappa_j)} & 0 \end{pmatrix}, \]

\[\text{Res}_{-i\kappa_j} m(k) = \lim_{k \to -i\kappa_j} m(k) \begin{pmatrix} 0 & -i\gamma_j^2 e^{2t\Phi(i\kappa_j)} \\ 0 & 0 \end{pmatrix}, \]

• the symmetry condition

\[m(-k) = m(k) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \]

• the normalizing condition

\[\lim_{\kappa \to \infty} m(i\kappa) = (1 \quad 1). \]

Phase function: \[\Phi(k) = \Phi(k, x, t) = 4ik^3 + ik \frac{x}{t} = 4ik^3 + 12ik\xi. \]
Region \(-c^2/2 < \xi < c^2/3, \xi = \frac{x}{12t}\)

Point \(a = a(\xi) \in (0, c)\) is given implicitly by the equation

\[
\int_a^0 \left(\xi + \frac{c^2 - a^2}{2} - s^2 \right) \sqrt{\frac{s^2 - a^2}{c^2 - s^2}} \, ds = 0.
\]

We conjugate with the "g-function":

\[
g(k) = 24i \int_{i\xi}^k \left(k^2 + \xi + \frac{c^2 - a^2}{2} \right) \sqrt{\frac{k^2 + a^2}{k^2 + c^2}} \, dk,
\]

\[
m^{(1)}(k) = m(k)e^{-t(\Phi(k) - g(k))} \sigma_3,
\]

and then make upper-lower and lower-upper factorizations.
Deformation of the contour and the model problem.
Model problem

\[m_{\pm}^{\text{mod}}(k) = m_{-}^{\text{mod}}(k)v^{\text{mod}}(k), \]

\[v^{\text{mod}}(k) = \begin{cases}
\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, & k \in [ic, ia], \\
\begin{pmatrix} e^{-itB(\xi)+\Delta(\xi)} & 0 \\ 0 & e^{itB(\xi)-\Delta(\xi)} \end{pmatrix}, & k \in [ia, -ia], \\
\begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, & k \in [-ia, -ic]
\end{cases} \]

Here \(B(\xi) = 2g(ia + 0) \), and \(\Delta(\xi) \) depend on the scattering data of the initial profile.
Let \mathcal{M} be the Riemann surface of $\mathcal{R}(\lambda) = \sqrt{\lambda(\lambda + c^2)(\lambda + a^2)}$, with the sheets glued along intervals $[-c^2, -a^2] \cup [0, \infty)$, and let $p = (\lambda, \pm)$ denote a point on this surface.

Introduce the canonical basis of cycles.
Let \mathcal{M} be the Riemann surface of $\mathcal{R}(\lambda) = \sqrt{\lambda(\lambda + c^2)(\lambda + a^2)}$, with the sheets glued along intervals $[-c^2, -a^2] \cup [0, \infty)$, and let $p = (\lambda, \pm)$ denote a point on this surface.

Introduce the canonical basis of cycles.

Let $d\omega$ be the holomorphic Abel differential, $\int_a d\omega = 2\pi i$;

Denote by $\mathcal{K}(\xi) = -\frac{\tau(\xi)}{2} + \pi i$ the Riemann constant, where $\tau(\xi) = \int_b d\omega$;

Let $A(p, \xi) = \int_\infty^p d\omega$ be the Abel map.
Let \mathbb{M} — be the Riemann surface of $R(\lambda) = \sqrt{\lambda(\lambda + c^2)(\lambda + a^2)}$, with the sheets glued along intervals $[-c^2, -a^2] \cup [0, \infty)$, and let $p = (\lambda, \pm)$ denote a point on this surface.

Introduce the canonical basis of cycles.

Let $d\omega$ be the holomorphic Abel differential, $\int_a d\omega = 2\pi i$;

Denote by $K(\xi) = -\frac{\tau(\xi)}{2} + \pi i$ the Riemann constant, where $\tau(\xi) = \int_b d\omega$;

Let $A(p, \xi) = \int_\infty^p d\omega$ be the Abel map.

$$\Delta(\xi) = \frac{\int_b R^{-1}(\lambda) \left(\log |\chi(k)| + 2 \log \frac{k-i\kappa_j}{k+i\kappa_j} \right) d\lambda}{\int_a R^{-1}(\lambda) d\lambda}.$$
The following Jacobi inversion problem

\[A(p, \xi) + K(\xi) = -\Delta(\xi) \]

has the unique solution \(p_0 = (\lambda_0, \pm) \), \(\lambda_0 \in [-a^2, 0] \).
The following Jacobi inversion problem

\[A(p, \xi) + K(\xi) = -\Delta(\xi) \]

has the unique solution \(p_0 = (\lambda_0, \pm), \lambda_0 \in [-a^2, 0] \).

Let \(d\Omega_1 = \frac{i}{2\sqrt{\lambda}} \left(1 + O(\lambda^{-1})\right)\), \(d\Omega_3 = -6i\sqrt{\lambda} \left(1 + O(\lambda^{-2})\right)\) be the normalized Abel differentials of the second kind. Put

\[V(\xi) = \int_b d\Omega_1, \quad W(\xi) = \int_b d\Omega_3, \quad \text{then} \]

\[B(\xi) = V(\xi) + \xi W(\xi). \]
The following Jacobi inversion problem

\[A(p, \xi) + K(\xi) = -\Delta(\xi) \]

has the unique solution \(p_0 = (\lambda_0, \pm) \), \(\lambda_0 \in [-a^2, 0] \).

Let \(d\Omega_1 = \frac{i}{2\sqrt{\lambda}} (1 + O(\lambda^{-1})) \), \(d\Omega_3 = -6i\sqrt{\lambda} (1 + O(\lambda^{-2})) \) be the normalized Abel differentials of the second kind. Put

\[V(\xi) = \int_b d\Omega_1, \quad W(\xi) = \int_b d\Omega_3, \quad \text{then} \]

\[B(\xi) = V(\xi) + \xi W(\xi). \]

Let

\[\theta(v) := \theta(v, \xi) = \sum_{m \in \mathbb{Z}} \exp \left(\pi i m^2 \tau(\xi) + 2\pi i m v \right) \]

be the Jacobi theta-function.

Put \(h(\xi) = a^2(\xi) + c^2 + 2 \int_a^{\lambda} \mathcal{R}^{-1}(\lambda) d\lambda \left(\int_a^{\lambda} \mathcal{R}^{-1}(\lambda) d\lambda \right)^{-1}. \)
In the domain $-6c^2 t < x < 4c^2 t$ the solution has the following asymptotical behaviour as $t \to \infty$:

$$q(x, t) = -2 \frac{d^2}{dx^2} \log \theta \left(V(\xi)x - W(\xi)t - A(p_0, \xi) - K(\xi) \right) - h(\xi) + o(1).$$

In the domain $x > 4c^2 t$:

$$q(x, t) = -2 \sum_{j=1}^{N} \frac{\kappa_j^2}{\cosh^2(\kappa_j x - 4\kappa_j^3 t - p_j)} + O(t^{-1}),$$

where

$$p_j = \frac{1}{2} \log \left(\frac{\gamma_j^2}{2\kappa_j} \prod_{i=j+1}^{N} \left(\frac{\kappa_i - \kappa_j}{\kappa_i + \kappa_j} \right)^2 \right).$$
In the domain $x < -6c^2 t$

$$q(x, t) = -c^2 + P(x, t),$$

$$P(x, t) = \sqrt{\frac{4\nu(k_{1,0})k_{1,0}}{3t}} \sin(16tk_{1,0}^3 - \nu(k_{1,0}) \log(192tk_{1,0}^3) + \delta(k_{1,0})) + O(t^{-\alpha})$$

for any $1/2 < \alpha < 1$.

Here $k_{1,0} = \sqrt{\frac{c^2}{2} - \frac{x}{12t}},$

$$\nu(k_{1,0}) = -\frac{1}{2\pi} \log(1 - |R_1(k_{1,0})|^2),$$

$$\delta(k_{1,0}) = \frac{\pi}{4} - \arg(R_1(k_{1,0})) + \arg(\Gamma(i\nu(k_{1,0}))) - \frac{1}{\pi} \int_{\mathbb{R}\setminus[-k_{1,0}, k_{1,0}]} \log \left(\frac{1 - |R_1(\zeta)|^2}{1 - |R_1(k_{1,0})|^2} \right) \frac{1}{\zeta - k_{1,0}} d\zeta.$$
We consider the Cauchy problem for the Toda lattice equation

\[\begin{align*}
\dot{b}(n, t) &= 2(a^2(n, t) - a^2(n - 1, t)), \\
\dot{a}(n, t) &= a(n, t)(b(n + 1, t) - b(n, t)),
\end{align*} \]

with the steplike initial data

\[\begin{align*}
a(n, 0) &\to a_+, \quad b(n, 0) \to b_+, \quad \text{as } n \to +\infty, \\
a(n, 0) &\to a_-, \quad b(n, 0) \to b_-, \quad \text{as } n \to -\infty.
\end{align*} \]

The Toda lattice equation is equivalent to the Lax equation \(\dot{\mathcal{H}} = [\mathcal{H}, \mathcal{A}] \):

\[\begin{align*}
(\mathcal{H}(t)y)(n) &:= a(n - 1, t)y(n - 1) + b(n, t)y(n) + a(n, t)y(n + 1), \\
(\mathcal{A}(t)y) &:= -a(n - 1, t)y(n - 1) + a(n, t)y(n + 1).
\end{align*} \]
Background spectra

The Jacobi equation:

\[a(n - 1, t)y(n - 1) + b(n, t)y(n) + a(n, t)y(n + 1) = \lambda y(n). \]

By shifting and scaling of the spectral parameter the initial data of a general location are:

\[a(n, 0) \rightarrow \frac{1}{2}, \quad b(n, 0) \rightarrow 0, \quad \text{as} \quad n \rightarrow +\infty, \]
\[a(n, 0) \rightarrow a, \quad b(n, 0) \rightarrow b, \quad \text{as} \quad n \rightarrow -\infty. \]

Background operators

\[(H_1y)(n) := ay(n - 1) + by(n) + ay(n + 1),\]
\[(Hy)(n) := \frac{1}{2}y(n - 1) + \frac{1}{2}y(n + 1), \quad n \in \mathbb{Z},\]

define the continuous spectrum of \(\mathcal{H}(t) \).
The Toda shock problem

Let the constants $b, a \in \mathbb{R}$ satisfy the condition $b < -1$, $0 < 2a < -b - 1$. Then the background spectra $[b - 2a, b + 2a]$ and $[-1, 1]$ are not overlapping and the left background spectrum is located to the left of the right background spectrum, that corresponds to the Toda shock problem.

- Direct/inverse scattering - Oba ’91, E/ Michor/ Teschl ’08
- The Cauchy problem solution - E/Michor/Teschl ’09
- Long time asymptotics (for $a=1/2$, in the middle interval) - Venakides/ Deift/ Oba ’91
- Five regions, divided by rays $\frac{n}{t} = \xi_{cr}$: $\xi_{cr,1} < \xi'_{cr,1} < \xi'_{cr,2} < \xi_{cr,2}$.
Non-overlapping background: $\sigma(H) = [-1, 1]$, $\sigma(H_1) = [1.2, 2.8]$, $a = 0.4$, $b = 2$.

\begin{align*}
\text{a}(n,200) & \quad \text{b}(n,200)
\end{align*}
Toda rarefaction problem, RH problem approach

\[a(n, 0) \to a, \quad b(n, 0) \to b, \quad \text{as} \ n \to -\infty, \]
\[a(n, 0) \to \frac{1}{2}, \quad b(n, 0) \to 0, \quad \text{as} \ n \to +\infty, \]

where \(a > 0, \ b \in \mathbb{R} \) satisfy the condition \(1 < b - 2a \).

Results (E/Michor/Teschl):

- In the region \(n > t \), the solution \{a(n, t), b(n, t)\} is asymptotically close to the coefficients of the right background Jacobi operator \{\frac{1}{2}, 0\}, plus a sum of solitons corresponding to the eigenvalues \(\lambda_j < -1 \).
- In the region \(n < -2at \), the solution is close to the left background constants \{a, b\}, plus a sum of solitons corresponding to the eigenvalues \(\lambda_j > b + 2a \).
In the region $-2at < n < 0$, as $t \to \infty$ we have

\[
a(n, t) = -\frac{n}{2t} + O\left(\frac{1}{t}\right), \quad b(n, t) = b - 2a - \frac{n}{t} + O\left(\frac{1}{t}\right).
\]

In the region $0 < n < t$, as $t \to \infty$ we have

\[
a(n, t) = \frac{n}{2t} + O\left(\frac{1}{t}\right), \quad b(n, t) = 1 - \frac{n}{t} + O\left(\frac{1}{t}\right).
\]

\[
O\left(\frac{1}{t}\right) = -\frac{n}{8t^2} \left(\frac{\sqrt{1 - \frac{n}{t}} + 1 + \frac{2n}{t}}{\frac{n}{t} \sqrt{1 - \frac{n}{t}} (1 + \sqrt{1 - \frac{n}{t}})}\right)
\]

\[
\frac{1}{\sqrt{2\pi}} \int_{\theta_0}^{2\pi - \theta_0} \frac{2u'(\theta) \sin \frac{\theta}{2} - u(\theta) \cos \frac{\theta}{2}}{\sqrt{1 - \frac{2n}{t} - \cos \theta \sin^2 \frac{\theta}{2}}} d\theta \left(1 + o(1)\right)
\]

\[
\theta_0 = \arccos\left(1 - \frac{n}{2t}\right), \quad u(\theta) = R(\cos \theta) \left(\prod_{z_k \in \{0,1\}} |z_k|\frac{e^{i\theta} - z_k^{-1}}{e^{i\theta} - z_k}\right)^{-2}.
\]
Embedding backgrounds: $\sigma(H) = [-1, 1], \sigma(H_1) = [-0.1, 0.7]$.
Overlapping backgrounds: $\sigma(H) = [-1, 1]$, $\sigma(H_1) = [-4, 0]$; $a = 1$, $b = -2$.
Overlapping backgrounds: $\sigma(H) = [-1, 1]$, $\sigma(H_1) = [-0.9, 1.5]$; $a = 0.6$, $b = 0.3$.
Thank you for your attention!