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Szegö Theorem. Setting
Classical Szegö Theorem (Convolution or Tõplitz Operators)

Consider a selfadjoint operator in l2(Z) (discrete convolution)

(Au)j = ∑
k2Z

Aj�kuk , Aj = A�j , ∑
j2Z

jAj j < ∞.

Let

Λ = [�M,�M + 1, ...,M ] � Z be an interval,

AΛ = fAj ,k2Λg be the restriction of A to Λ,

a(p) = ∑
j2Z

Aje2πipj > 0, p 2 T = [0, 1)

be the Fourier transform (symbol) of A,

fljgj2Z be the inverse Fourier transform of log a .
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Szegö Theorem. Setting
Classical Szegö Theorem

Then (Szegö 1915 (leading term), 1935 (subleading term))

log detAΛ = jΛjl0 +
∞

∑
j=1
jlj l�j + o(1), jΛj ! ∞,

where jΛj = 2M + 1 := L and a is smooth enough.
Use the identity log detAΛ = tr logAΛ to write a "spectral" form

tr logAΛ = jΛjl0 +
∞

∑
j=1
jlj l�j + o(1), jΛj ! ∞,

i.e., a two-term asymptotic trace formula for AΛ via the "limiting"
operator A.

This suggests a generalization of the formula, in which log is replaced by a
function ϕ : R ! C of a certain class.

Pastur (ILT) Szegö-Erg Mainz, 5 � 6 September 4 / 38



Szegö Theorem. Setting
Classical Szegö Theorem (Generalisations)

Generalizations include the multidimensional discrete and continuous cases
of Λ 2 Zd , Rd , where Λ is, say, a cube of side length L centered in the
origin and a and ϕ are smooth enough

tr ϕ(AΛ) = L
d
Z

T
ϕ(a(p))dp + Ld�1T2 + o(Ld�1), L! ∞,

where T2 is an L-independent functional of ϕ and a.

Observe that the leading term of the Szëgo formula is proportional to the
"volume" Ld of Λ while the subleading term is proportional the surface
area Ld�1 of Λ, quite natural from statistical mechanics point of view.

A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, Springer, 1990
B. Simon, Szegö�s Theorem and Its Descendants, PUP, 2011,
SPB: I.A. Ibragimov, A.Laptev, Yu.Safarov, A. Sobolev 60��13�
Kharkov: N.I. Akhiezer 60�
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Szegö Theorem. Setting
Classical Szegö Theorem (Generalisations)

It is important to stress that while the leading term of Szëgo formula is
fairly insensitive to the smoothness of ϕ and a, the sub-leading term is not.

An example: ϕ 2 C∞ but a is the indicator of an interval ∆ � T. In this
case (Widom 82, Sobolev 12)

tr ϕ(AΛ) = Ld ((1� j∆j)ϕ(0) + j∆jϕ(1))
+ S2 L(d�1) log L+ o(L(d�1) log L), L! ∞.

The case where ϕ(0) = ϕ(1) and ϕ 2 Cα, α 2 (0, 1) is important for
quantum information theory (violation of the area law in extended
translation invariant quantum systems).
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Szegö Theorem. Setting
Ergodic Operators

A natural generalization of convolution operators in l2(Zd ) and L2(Rd )
are ergodic operators, a well known example is the Schrödinger operator
with ergodic potential, see e.g.
L. Pastur, A. Figotin, Spectra of Random and Almost Periodic Operators,
Springer, 1992.

Consider the technically simplest case of l2(Z). Let (Ω,F ,P) be a
probability space, T be a measure preserving and ergodic automorphism of
Ω and A : Ω ! B(l2(Z)).
We say that a random operator A(ω) := fAjk (ω)gj ,k2Z is ergodic if with
probability 1 and for any t 2 Z

Aj+t ,k+t (ω) = Ajk (T
tω), 8j , k 2 Z.
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Szegö Theorem. Setting
Ergodic Operators: Examples

Convolution operators: take Ω = f0g, in particular the operator of
second di¤erence (one dimensional discrete Laplacian)

(H0u)j = uj�1 + uj+1.

The operator V of multiplication (Vu)j = vjuj , j 2 Z by ergodic
sequence v = fvjgj2Z, i.e., Ω = RZ, (Tv)j = vj+1 is the shift and
vj (ω) = V(T jω) with a bounded measurable V : Ω ! R.

One dimensional discrete Schrödinger operator

H = H0 + V

and now V is called the ergodic potential.
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Szegö Theorem. Setting
Ergodic Potentials: Examples

Ω = T, F is the Borel algebra of T, P is the normalized to unity
Lebesgue measure on T and Tω � ω+ α (mod 1) with an irrational
α 2 [0, 1). Given V : T ! R (1-periodic), set vj = V(αj +ω) and
obtain a simplest almost periodic (quasiperiodic) potential.

Ω = RZ, F is the σ-algebra of cylinders in RZ, P is the product
measure of a 1d probability law F and Tfvjgj2Z = fvj+1gj2Z,
vj = v0(T j ) i.e., V = v0 and V is the double in�nite sequence of
i.i.d. random variables. This is a random potential.
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Szegö Theorem. Setting
An Analog of Szegö Theorem for Ergodic Operators

An analog could be as follows (again in the 1d case for simplicity). Let B
be a selfadjoint ergodic operator in l2(Z), a : R ! C and ϕ : C ! C be
su¢ ciently "good" functions. Then A = a(B) is a normal ergodic
operator. Denote AΛ the restriction of A to l2(Λ), : Λ = [�M,M ]. We
are again interested in the asymptotic behavior of

tr ϕ(AΛ), L := 2M + 1! ∞,

i.e., a linear statistics of the eigenvalues of AΛ as jΛj ! ∞.
The behavior is determined by the triple

(B, a, ϕ)

of underlying ergodic operator B and functions a : R ! C, the symbol,
and ϕ : C ! C, the test function.
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Szegö Theorem. Setting
An Analog of Szegö Theorem

To make the analogy more clear, consider a convolution operator A and
assume for simplicity that its symbol a is even. Then

a(p) = ea(cos 2πp), p 2 T

and since cos 2πp is the symbol of the convolution operator H0
(one-dimensional discrete Laplacian), we can write A as

A = ea(H0).
Thus, replace H0 by the one-dimensional discrete Schrödinger operator
H0 + V with ergodic potential to obtain an interesting class of ergodic
operators.
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Szegö Theorem. Results
Leading Term

The leading term of tr ϕ(AΛ) for ergodic operators is known.

Recall the notion of the Integrated Density of States (IDS) of an ergodic
operator A. Let

NAΛ = jΛj�1 ∑
l

δ
λ
(Λ)
l

be the Normalized Counting Measure of eigenvalues fλ
(Λ)
l gl of AΛ. Then

there exists a non-random non-negative measure NA known as the
Integrated Density of States (IDS) of A and such that for any continuous
and bounded function ϕ : R ! C with probability 1
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Szegö Theorem. Results
Leading Term

Thus

lim
Λ
jΛj�1tr ϕ(AΛ) = lim

Λ!∞

Z
ϕ(λ)NAΛ(dλ)

=
Z

ϕ(λ)NA(dλ) =
Z

ϕ(a(λ))NB (dλ).

This implies for A = a(H) with probability 1:

tr ϕ(AΛ) = tr ϕ(aΛ(H)) = jΛj
Z

ϕ(λ)NAΛ(dλ)

= jΛj
Z

ϕ(λ)NA(dλ) + o(jΛj) =
Z

ϕ(a(λ))NB (dλ) + o(Λ)

= jΛjEfϕ00(A)g+ o(jΛj) = jΛjEf(ϕ(a(H)))00g+ o(jΛj), jΛj ! ∞.
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Szegö Theorem. Results
Subleading Terms: Almost Periodic Underlying Operator and Smooth Symbols

Theorem
Let H be the one dimensional discrete Schroedinger operator with
quasiperiodic potential: V = fvjgj2Z, vj = V(αj +ω), V 2 C [β]+2 and
α 2 (0, 1) is Diophantine, i.e., jαl �mj � C/l β, β > 1, 8m 2 Z, 8l 2 N.
Then we have 8z ,distfz , σ(H)g � η0 > 2, Λ = [�M,M ]

∑
jj j�M

(GΛ(ω))jj = jΛj
Z

T
G00(ω)dω

+r+(αM +ω) + r�(�αM +ω) + o(1), M ! ∞,

where r� are continuous 1-periodic functions.

Thus, the O(1) subleading terms are as in classical case, however they are
almost periodic ("backward" and "forward").
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Szegö Theorem. Results
Subleading Terms: Random Underlying Operator and Smooth Symbol

The leading term in the above "stochastic Szegö theorem is of the form of
the Law of Large Numbers, i.e., of the order jΛj and non-random. Thus a
natural guess is that if eigenvalues of ϕ(aΛ(H)) are random enough, then
the subleading term is of the form the Central Limit Theorem, i.e., of the
order jΛj1/2 and Gaussian distributed, but not the O(1) surface term.

Indeed, consider for simpliciry the case where
a(λ) = λ, ϕ(λ) = (λ� z)�1, i.e.,

ϕ(a(H)) = G := (H � z)�1, ϕ(aΛ(H)) = GΛ := (HΛ � z)�1

are the resolvents of H and of its restriction HΛ.
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Szegö Theorem. Results
Subleading Terms: Random Underlying Operator and Smooth Symbol (CLT)

Theorem
Let H = H0 + V be the Schrödinger operator whose potential is a
sequence of bounded i.i.d. random variables

V = fvjgj2Z, jvj j � V0.

Assume z = x 2 R and 2(V0 + 1)/jx j 2 (0, 1). Then the random variable

jΛj�1/2(tr GΛ � jΛjEfG00g)

converges in distribution as jΛj := L! ∞ to the Gaussian random
variable γ of zero mean and non-zero �nite variance σ2 > 0.

Thus, the subleading term is now jΛj1/2γ (of the order jΛj1/2 and
random) but not just independent of jΛj as in the classical Szegö case.
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Szegö Theorem. Results
Subleading Terms: Random Underlying Operator and Smooth Symbols (CLT)

Remarks. i) It is known that

σ(HΛ) � σ(H) = [�2+ V0, 2+ V0)], 8Λ.

Thus the condition on x guarantees that the theorem is an analog of the
smooth case of the Szëgo theorem.
ii) An analogous result is valid for certain classes of ϕ � a 2 C 1.
iii) It is of interest to �nd the "surface" (O(1)) term (now
"subsubleading"):

s+(TMω) + s�(T�Mω) +O(e�2bM ), M ! ∞

where Λ = [�M,M ] and the "forward" and "backward" terms s� are
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Szegö Theorem. Results
Subleading Terms: Random Underlying Operator and Smooth Symbols (CLT)

s�(ω) = �(1� G0,�1(ω))�1
0

∑
j=�∞

G0,j (ω)Gj ,�1(ω).

Note that the terms are random (cf. the almost periodic case).

It is worth mentioning that there was no a "serious" use of the spectrum
structure (ac, pp) of H so far. This, however, proves to be important the
cases where an O(1) term is either leading or subleading, which involve
non-smooth symbols.
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Szegö Theorem. Results
Subleading Terms: Random Underlying Operator and Nonsmooth Symbols (no CLT)

Consider a(λ) = χ∆(λ), ∆ 2 σ(H) and ϕ(λ) = λ(1� λ), hence
A = P := EH (∆) and

ϕ(a(H)) = P(1� P) = 0, ϕ(aΛ(H)) = PΛ(1Λ � PΛ).

The example is related to the area law of quantum informatics (a toy
model)

We will use the following manifestation of the pure point spectrum
(Anderson localization) for one dimensional discrete Schrödinger operator
with random potential

EfjPjk jg � Ce�γjj�k j, C < ∞,γ > 0.

The exponential (!?) bound is valid, in particular, if the probability law of
i.i.d. random potential has a bounded density.
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Szegö Theorem. Results
Subleading Terms: Random Underlying Operator and Nonsmooth Symbols (no CLT)

Theorem
Let H be the Schrödinger operator with random potential such that the
above exponential bound holds and ∆ 2 σ(H), NH (∆) 2 (0, 1) where NH
is the IDS of H. Then with probability 1

trPΛ(1Λ � PΛ) = t+(T
Mω) + t�(T�Mω) + o(1), M ! ∞.

t+ =
0

∑
j=�∞

∞

∑
k=1

jPjk j2, t� =
∞

∑
j=0

�1
∑

k=�∞
jPjk j2.

are non-zero random variables.

Remarks. i) No "volume" contribution, only "surface" one (a "toy" case
of the area law of quantum informatics)

ii) V = 0 : Pjk = sin c(∆)jj � k j/jj � k j, t(L)� = O(log L), i.e., the
Widom-type asymptotics (violation of the area law).
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Szegö Theorem. Results
Entanglement Entropy of Free Fermions

This an important topic of quantum information theory dealing with

SΛ = tr h(PΛ), h(x) = �x log2 x � (1� x) log2(1� x),

i.e., with the case of Szegö theorem where ϕ = h (non-smooth!), a = χ∆.

(i) Constant potential, moreover, convolution operators: Leschke, Sobolev,
Spitzer 13

SΛ = C1 log L+O(1), L = jΛj = 2M + 1! ∞,

(ii) Random potentials: P., Slavin 14, Elgart, P. Shcherbina 16.

SΛ = C2 + o(1), L = jΛj = 2M + 1! ∞,

Randomness kills quantum correlations (entanglement).
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Quantum Informatics. Emergence of the Area Law
Weak Disorder
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Quantum Informatics. Emergence of the Area Law
Stronger Disorder
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Szegö Theorem. Proofs
Toolkit

(i) Resolvent identity. Given selfadjoint and invertible A1 and A2:

(A1 + A2)�1 = (A1 + A2)�1 + A�11 (A1 � A2)A�12 .

(ii) If H = H0 + V , jvj j � V0, σ(H) � [�2� V0, 2+ V0],
G = (H � z)�1, jjG jj � δ�1, and δ := dist(z , [�2� V0, 2+ V0]) > 0,
then

jGj ,k j � C (z)e�b(z )jj�k j, C < ∞, b > 0, j , k 2 Z.

Use (i) with A1 = H0, A2 = V � z , jjH0jj = 2, jjV � z jj �
dist(z , [�V0,V0]) := α > 2, , δ > 0 to write

Gjk =
∞

∑
l=0

((H0(V � z)�1)l (V � z)�1)jk =
∞

∑
l=jj�k j

� (2/α)jj�k j(α� 2)�1.

thus C = 2/(α� 2)�1 < ∞, b = log α/2 > 0.
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Szegö Theorem. Proofs
Toolkit

(iii) If GΛ = (H jΛ � z)�1, Λ = [�M,M ], δ > 0, then

(GΛ)jk = Gjk � Gj ,M+1(GΛ)Mk � Gj ,�M�1(GΛ)�M ,k , j , k 2 Λ.

Use (i) with A1 = H, A2 = HΛ �HZnΛ.

(iv) If δ > 1, then

(GΛ)Mk = �GMk (1+ GM ,M+1)�1 +O(e�2bM ), M ! ∞,
(GΛ)�Mk = �G�Mk (1+ G�M�1,�M )�1 +O(e�2bM ), M ! ∞

Use (iii) with j = M, (ii) and jGM ,M+1j, j(GΛ)Mk j � jjG jj < δ�1 to
estimate

jGM ,�M�1(GΛ)Mk (1+ GM ,M+1)Mk j � C (δ� 1)�1e�2bM .
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Szegö Theorem. Proofs
Toolkit

(v) Basic formulas

(GΛ)jk = Gjk �
Gj ,M+1GMk
1+ GM ,M+1

� Gj ,�M�1G�M ,k
1+ G�M ,�M�1

+O(e�2bM ), j , k 2 Λ ! ∞,

use (iii) and (iv);

tr GΛ = ∑
j2Λ

Gjj + s
(M )
+ + s(M )� +O(e�bjΛj),

use the previous formula for j = k and (ii) to obtain

s(M )� = �(1+ G�M ,�(M+1))�1
M

∑
j=�M

Gj ,�(M+1)G�Mj .
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Szegö Theorem. Proofs
Constant Potential.

An example of the convolution operator, classical case of Szegö�s theorem.
Here Gjk = Gj�k , Gj = G�j (fGj ,kg is symmetric since H is real), hence,
by basic formula (ii)

tr GΛ = jΛjG0 + s+ + s� +O(e�bjΛj), jΛj = 2M + 1! ∞,

s� = �(1+ G�1)�1
0

∑
j=�∞

GjG�j .

This is a simple particular case of Szegö�s theorem. To check use

Gj =
Z 1

0

e2πipj

2 cos 2πp � z dp.

Pastur (ILT) Szegö-Erg Mainz, 5 � 6 September 27 / 38



Szegö Theorem. Proofs
General Ergodic Case

Since H is ergodic, G = (H � z)�1 is also egodic, hence

Gjk (T
aω) = Gj+a,k+a(ω),

and by basic formula we obtain the relation

tr GΛ = ∑
j2Λ

Gjj + s+(T+Mω) + s�(T�Mω) +O(e�2bM ),

jΛj = 2M + 1! ∞,

having again the backward and forward terms à la Szegö and valid with
probability 1, where

s�(ω) = �
1

1+ G0,�1(ω)

0

∑
j=�∞

Gj0(ω)G�1,j (ω).

are well de�ned random variables.
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Szegö Theorem. Proofs
General Ergodic Case

Indeed, we have by (ii) and by ergodicity

M

∑
j=�M

GjM (ω)GM+1,j (ω) =
M

∑
j=�∞

GjM (ω)GM+1,j (ω) +O(e
�2bM )

=
0

∑
j=�∞

Gj0(TMω)G1,j (TMω) +O(e�2bM )

Besides, by ergodic theorem we have for the �rst term with probability 1

∑
j2Λ

Gjj (ω) = ∑
j2Λ

G00(T j ) = jΛjEfG00g+ o(jΛj), jΛj ! ∞,

thus it gives the leading term à la Szegö, but not more in general!
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Szegö Theorem. Proofs
Almost Periodic Case

Here vj = V(αj +ω), V 2 C [β]+2 is 1-periodic, α 2 (0, 1) is Diophantine
jαl �mj � C/l β, β > 1, 8m 2 Z, 8l 2 N, and ω 2 [0, 1) (the
"randomness") parameter, hence

Gjj (ω) = G(αj +ω), G(ω) := G00(ω),

and (recall H. Weyl)

∑
j2Λ

Gjj (ω) =
M

∑
j2�M

G(αj +ω).

Since G is 1-periodic and of C [β]+2, we have by (i)
G(ω) = ∑

l2Z

Gle2πiωl , jGl j = O(1/jl j[β]+2),

and

∑
j2Λ

Gjj (ω) =
M

∑
j2�M

G(αj +ω) = jΛjG0 + g+(αM +ω) + g�(�αM +ω),
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Szegö Theorem. Proofs
Almost Periodic Case

where
g�(ω) = ∑

l 6=0
Gle2πilω�πiαl/2i sinπαl

and since j sinπαl j = j sinπ(αl �m)j � C jl j�β and jGl j � C/l j2+[β], the
series is absolutely convergent.
We obtain �nally uniformly in ω 2 [0, 1) and for jΛj ! ∞

tr GΛ = jΛj
Z 1

0
G00(ω)dω+ r+(T+Mω) + r�(T�Mω) +O(e�bjΛj),

r�(ω) = s�(ω) + g�(ω)

The leading term is "nonrandom", since
R 1
0 G00(ω)dω = EfG00g and the

subleading terms (à la Szegö and new) are bounded and "almost periodic"
in M.
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Szegö Theorem. Proofs
Random Case. CLT

A General CLT (à la S. Bernstein)

Theorem
Let fXjgj2Z be i.i.d. random variables and Y0 be a bounded Borelian
function of fXjgj2Z. Assume that EfYjg = 0 and

∞

∑
p=1

EfjYp � EfYp jF p�pgjg < ∞.

where F ba is the σ-algebra generatd by fXjgj=bj=a , [a, b] � Z. Then
σ2 := ∑j2Z EfY0Yjg < ∞ and if σ2 > 0 the normalized sum
(2M + 1)�1/2 ∑M

j=�M Yj converges in distribution to the Gaussian random
variable γ such that Efγg = 0 and Varfγg := Efγ2g � E2fγg = σ2.
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Szegö Theorem. Proofs
Random Case. CLT

For the above theorem see I.A.Ibragimov, Yu.V.Linnik Independent and
Stationary Sequences of Random Variables, Wolters-Noordho¤, Groningen,
1986.

The theorem conditions are:
(a) the decay of correlations

∞

∑
p=1

EfjYp � EfYp jF p�pgjg < ∞;

(b) the positivity of the variance σ2.

We take Xj = vj , Y0 = G �00 = G00 � EfG00g.
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Szegö Theorem. Proofs
Random Case. Decay of Correlations

To check the condition of decay of correlations, set G (p) = G jvj=0, jj j>p
and use the resolvent identity for Rp = G00 � G (p)00 and (ii):

jRp j =
����� ∑
jj j>p

G0jvjG
(p)
j0

����� � V0δ�1 ∑
jj j>p

jG0j j = O(e�bp).

Since EfG (p)00 jF
p
�pg = G

(p)
00 , we have

EfjYp � EfYp jF p�pgjg = EfjRp � EfRp jF
p
�pgjg = O(e�bp).
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Szegö Theorem. Proof of CLT
Cramér-Rao Inequality

Theorem

Let fξtj gNj=1, t 2 I be i.i.d. random variables whose common probability
law has a density ft , ϕ : RN ! R and Φt = ϕ(ξt1, ..., ξ

t
N ). Then

VarfΦtg : = EfΦ2
t g � E2fΦtg ��

d
dt
EfΦtg

�2,
NFt

where

Ft =
Z � d

dt
log ft (x)

�2
ft (x)dx =

Z
dx
�
d
dt
ft (x)

�2
/ft (x)dx

is the Fisher information.
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Szegö Theorem. Proofs
Cramér-Rao Inequality

Proof (single variable, N = 1). Use the Cauchy-Schwarz inequality

Varfη1g � (Covfη1η2g)2/Varfη2g

where

Varfηg = Ef(η � Efηg)2g
Covfη1η2g = Ef(η1 � Efη1g)(η2 � Efη2g)g.

Take η1 = ϕ(ξt ), η2 =
d
dt (log ft (ξt )). We obtain:

Efη2g =
Z f �t (x)
ft (x)

ft (x)dx = 0, Covfη1η2g =
d
dt

Z
ϕ(x)ft (x)dx .
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Szegö Theorem. Proof of CLT
Positivity of Variance

Take ξt = tvj , t 2 [1� ε, 1+ ε]. Since it is easy to proof that

σ2 = lim
M!∞

VarfΞMg, ΞM = (2M + 1)�1/2 ∑
jj j�M

Gjj

take Φ = ΞM . Then by (i)

d
dt
EfΞMgjt=1 = �(2M + 1)1/2EfG 200v0g

and

F jt=1 =
Z
(f (x) + xf 0(x))2

f (x)
dx

thus
σ2 � (EfG 200v0g)2/F jt=1
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Szegö Theorem. Proofs
Positivity of Variance

One needs to prove:
EfG 200v0g > 0, F1 > 0.

Examples.
(i) v0 � 0, since by spectral theorem

G 200 =
Z

σ(H )

(EH )00(dλ)

(λ� x)2 > 0, x /2 σ(H).

(ii) F1 = 0. Assume that the support of f is [a, b] and
0 < f < ∞, x 2 [a, b]. Then

F1 = 0) f (x) + xf (x) = 0) f (x) = �C log x , [a, b] � [0, 1].
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