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Transformation operators for the Sturm–Liouville operators

Let Tr : L2(0,+∞)→ L2(0,+∞) be the well-known transformation
operator saving the asymptotics at infinity:(

d2

dλ2
− r(λ)

)
Trg = Tr

d2

dξ2
g , g ∈ H2(0,+∞),

where r ∈ C 1[0,+∞)
⋂
L∞(0,+∞) i

∫∞
0 λ|r(λ)| dλ <∞. Its properties

are given in the book of V.A. Marchenko, “Sturm–Liouville Operators and
Applications”, 2011. Various transformation operators were studied by
M.Jaulent, C.Jean, E.Ya.Khruslov, B.Ya.Levin, B.M.Levitan, A.Ya.Povzner
and other mathematicians.

This operator has been extended to the classical Sobolev spaces H−m =
H−m(R), m = 0, 1, 2 by L.V.Fardigola [SIAM J. Control Optim. 51 (2013),
1781–180], [Mathematical Control and Related Fields 5 (2015), 31–53] and
by K.S.Khalina [Dopovidi Nats. Acad. Nauk. Ukr. (2012), No. 10, 24–29].
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Transformation operator Tr : L2(0,+∞)→ L2(0,+∞)
Operator Tr transforms each L2(0,+∞)-solution to

− v ′′ = µ2v , ξ > 0, (1)

into an L2(0,+∞)-solution to

− y ′′ + r(ξ) = µ2v , ξ > 0, (2)

under boundary condition y(ξ,µ)
v(ξ,µ) → 1 as ξ → +∞, µ ∈ C. It is known that

D(Tr ) = R(Tr ) = L2(0,+∞), the operator Tr is bounded and invertible.
Moreover

(Trg) (λ) = g(λ) +

∫ ∞
x

K (λ, ξ)g(ξ) dξ, λ > 0,(
T−1

r f
)

(ξ) = f (ξ) +

∫ ∞
ξ

L(ξ, x)f (x) dx , ξ > 0,

where K and L are well-known kernels of the transformation operator and
its inverse.
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The kernels K and L

The kernel K is defined by the system
Ky1y1 − Ky2y2 = r(y1)K , y2 ≥ y1 ≥ 0,

K (y1, y1) =
1

2

∫ ∞
y1

r(ξ) dξ, y1 > 0

lim
y1+y2→∞

Ky1(y)− Ky2(y) = 0, y2 ≥ y1 ≥ 0.

(3)

Then L ∈ C 2({y ∈ R2 | y2 ≥ y1 ≥ 0}) is determined by

L(y) + K (y) +

∫ y2

y1

L(y1, ξ)K (ξ, y2) dξ = 0, y2 ≥ y1 ≥ 0, (4)

or

L(y) + K (y) +

∫ y2

y1

K (y1, ξ)L(ξ, y2) dξ = 0, y2 ≥ y1 ≥ 0. (5)
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Properties of the kernels K and L I

Lemma ( V.A. Marchenko, “Sturm–Liouville Operators and
Applications”, 2011)

Let K be a solution to (3). Then K ∈ C 2({y ∈ R2 | y2 ≥ y1 ≥ 0}) and

|K (y)| ≤ M0σ0

(
y1 + y2

2

)
, y2 ≥ y1 ≥ 0 (6)

∣∣Kyj (y)
∣∣ ≤ 1

4

∣∣∣∣r (y1 + y2

2

)∣∣∣∣+ M1σ0

(
y1 + y2

2

)
, y2 ≥ y1 ≥ 0, j = 1, 2.

(7)

where M0 > 0, M1 > 0, and σ0(x) =
∫∞
x |r(ξ)| dξ, x > 0.
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Properties of the kernels K and L II

Lemma

Let K be a solution to (3), L ∈ C 2({y ∈ R2 | y2 ≥ y1 ≥ 0}) satisfy (4) or
(5). Then

|L(y)| ≤ N0σ0

(
y1 + y2

2

)
, y2 ≥ y1 ≥ 0 (8)

∣∣Lyj (y)
∣∣ ≤ 1

4

∣∣∣∣r (y1 + y2

2

)∣∣∣∣+ N1σ0

(
y1 + y2

2

)
, y2 ≥ y1 ≥ 0, j = 1, 2,

(9)

where N0 > 0 and N1 > 0.
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Classical Sobolev spaces
Let p ∈ N ∪ {0}. Denote

Hp = Hp(R) = {ϕ ∈ L2(R) | ∀k = 0, p
dk

dxk
ϕ ∈ L2(R)},

‖ϕ‖p =

 p∑
k=0

(∥∥∥∥ dk

dxk
ψ

∥∥∥∥
L2(R)

)2
1/2

,

H−p = (Hp)∗,

‖f ‖−p = sup

{
|〈f , ϕ〉|
‖ϕ‖p

| ‖ϕ‖p 6= 0

}
,〈

d

dx
f , ϕ

〉
= −

〈
f ,

d

dx
ϕ

〉
.

Denote by H̃m the subspace of all odd distributions in Hm, m ∈ Z.
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Extension of Tr to H̃0

Suppose that function r is even extended.
Denote T̃0 : H̃0 → H̃0 with the domain D

(
T̃0

)
= H̃0,

(
T̃0g

)
(λ) = g(λ) + sgnλ

∫ ∞
|λ|

K (|λ|, ξ)g(ξ) dξ, λ ∈ R, g ∈ D(T̃0).

The operator T̃0 is invertible and T̃−1
0 : H̃0 → H̃0, D

(
T̃−1

)
= H̃0,

(
T̃−1

0 f
)

(ξ) = f (ξ) + sgn ξ

∫ ∞
|ξ|

L(|ξ|, λ)f (λ) dλ, ξ ∈ R, f ∈ D(T̃−1
0 ),
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The adjoint operators for T̃0 and T̃−1
0

For the adjoint operators T̃∗0 and
(
T̃−1

0

)∗
=
(
T̃∗0

)−1
we have

T̃∗0 : H̃0 → H̃0, D
(
T̃∗0

)
= H̃0 = R

(
(T̃∗0)−1

)
,

(
T̃∗0ϕ

)
(ξ) = ϕ(ξ) + sgn ξ

∫ |ξ|
0

K (λ, |ξ|)ϕ(λ) dλ, ξ ∈ R, ϕ ∈ D
(
T̃∗0

)
,

and
(
T̃∗0

)−1
: H̃0 → H̃0, D

(
(T̃∗0)−1

)
= H̃0 = R

(
T̃∗0

)
,

((
T̃∗0

)−1
ψ

)
(λ) = ψ(λ) + sgnλ

∫ |λ|
0

L(ξ, |λ|)ψ(ξ) dξ,

λ ∈ R, ψ ∈ D
(

(T̃∗0)−1)
)
.
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Properties of the operator T̃∗0
Theorem

T̃∗0 is an automorphism of H̃m, 0 ≤ m ≤ 2;

(
T̃∗0ϕ

)′′
(ξ) =

(
T̃∗0

(
d2

dλ2
− r

)
ϕ

)
(ξ) + sgn ξ Ky1(0, ξ)ϕ′(0), ϕ∈ H̃2.

To prove the first assertion the estimates for the kernels K and L and their
derivatives are used.
To prove the second assertion we use equation

Ky1y1 − Ky2y2 = r(y1)K , y2 ≥ y1 ≥ 0,

after
(
T̃∗0ϕ

)′′
is calculated:(
T̃∗0ϕ

)′′
= · · ·+ sgn ξ

∫ |ξ|
0

Ky2y2(λ, |ξ|)ϕ(λ) dλ

= · · ·+ sgn ξ

∫ |ξ|
0

Ky1y1(λ, |ξ|)ϕ(λ) dλ.

Then, integrating by parts, we prove the assertion.
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Extension of Tr to H̃−2

Denote by T̃r the operator
(
T̃∗0|H̃2

)∗
. We have T̃r : H̃−2 → H̃−2,

D
(
T̃r

)
= H̃−2,〈
T̃rg , ϕ

〉
=
〈
g , T̃∗0ϕ

〉
, g ∈ D

(
T̃r

)
= H̃−2, ϕ ∈ H̃2.

Then T̃−1
r =

((
T̃∗0

)−1
|
H̃2

)∗
and T̃−1

r : H̃−2 → H̃−2, D
(
T̃−1

r

)
= H̃−2,

〈
T̃−1

r f , ψ
〉

=

〈
g ,
(
T̃∗0

)−1
ψ

〉
, f ∈ D

(
T̃−1

r

)
= H̃−2, ψ ∈ H̃2.
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Properties of the operator T̃r

Theorem

T̃r is an automorphism of H̃m, −2 ≤ m ≤ 2;

(
d2

dλ2
− r

)(
T̃rg

)
− 2

(
T̃rg

)
(+0)δ′ = T̃r

(
d2

dξ2
g − 2g(+0)δ′

)
,

if g ∈ H̃0
0 and g(+0) exists;

T̃rδ
′ = δ′
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Transformation operators for differential operators with
variable coefficients
Let us construct an operator S such that

1

ρ(x)

(
k(x)(Sg)′

)′
= S(g ′′) + ?

⊙
and S : H−2 → ?

⊙
,

where ρ, k ∈ C 1(R) are positive on R.

Let η = (kρ)1/4, η ∈ C 2(R), θ = (k/ρ)1/4,

σ(x) =

∫ x

0

dµ

θ2(µ)
, x ∈ R, σ(x)→ +∞ as x → +∞,

Dηθ = θ2

(
d

dx
+
η′

η

)
.

Then
1

ρ

(
kf ′
)′

= D2
ηθf −

(
Dηθ

(
θ2 η

′

η

))
f .
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Observations

Let f , g , ϕ, ψ ∈ C 2(R) be functions such that the following integrals are
converging. Denote

ϕ = S0ψ =
ψ ◦ σ
η

, ψ = S−1
0 ϕ = (ηϕ) ◦ σ−1.

We have

〈g , ψ〉 =

∫ ∞
−∞

g(λ)ψ(λ) dλ

=

∫ ∞
−∞

g(σ(x))

η(x)

ψ(σ(x))

η(x)

η2(x)

θ2(x)
dx = 〈〈S0g ,S0ψ〉〉,

where 〈〈f , ϕ〉〉 =
∫∞
−∞ f (x)ϕ(x)η

2(x)
θ2(x)

dx ;

DηθS0ψ = θ2

(
ψ′ ◦ σ
η

σ′ − ψ ◦ σ
η2

η′ +
η′

η

ψ ◦ σ
η

)
=
ψ′ ◦ σ
η

= S0

(
ψ′
)
;

〈〈Dηθf , ϕ〉〉 =
〈〈
DηθS0(S−1

0 f ), ϕ
〉〉

=
〈〈
S0

(
(S−1

0 f )′
)
,S0(S−1

0 ϕ)
〉〉

= 〈(S−1
0 f )′,S−1

0 ϕ〉 = −〈S−1
0 f , (S−1

0 ϕ)′〉
= −

〈〈
S0(S−1

0 f ),S0

(
(S−1

0 ϕ)′
)〉〉

= −〈〈f ,Dηθϕ〉〉.
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Spaces Hm

Operator S and spaces Hm are introduced and investigated by
L.V.Fardigola [Mathematical Control and Related Fields (MCRF) 5 (2015),
31–53].

Let us introduce the modified Sobolev spaces Hm and compare them with
the classical Sobolev spaces Hm, m = −2, 2.

Let L2
ηθ(R) is the space with the norm

‖ψ‖L2
ηθ(R) =

√∫ ∞
−∞
|ψ(x)|2 η

2(x)

θ2(x)
dx , ψ ∈ L2

ηθ(R)

and the inner product

〈〈ψ1, ψ2〉〉 =

∫ ∞
−∞

ψ1(x)ψ2(x)
η2(x)

θ2(x)
dx , ψ1, ψ2 ∈ L2

ηθ(R).

Denote by 〈f , ϕ〉 and 〈〈g , ψ〉〉 the value of distributions f ∈ H−p0 and
g ∈ H−p, respectively, on test functions ϕ ∈ Hp

0 and ψ ∈ Hp, respectively.

Let p = 0, 1, 2.
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Spaces Hm

Classical Sobolev spaces

Hp = {ϕ ∈ L2(R) |

∀k = 0, p
dk

dxk
ϕ ∈ L2(R)},

‖ϕ‖p =

(
p∑

k=0

∥∥∥∥ dk

dxk
ϕ

∥∥∥∥2

L2(R)

)1/2

,

H−p = (Hp)∗,

‖f ‖−p = sup

{
|〈f , ϕ〉|
‖ϕ‖p

| ‖ϕ‖p 6= 0

}
,

〈
d

dx
f , ϕ

〉
= −

〈
f ,

d

dx
ϕ

〉
, p 6= 2.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Modified Sobolev spaces

Hp = {ψ ∈ L2
loc(R) |

∀k = 0, p Dk
ηθψ ∈ L2

ηθ(R)},

[]ψ[]p =

(
p∑

k=0

(∥∥∥Dk
ηθψ
)∥∥∥2

L2
ηθ(R)

)1/2

,

H−p = (Hp)∗,

[]g []−p = sup

{
|〈〈g , ψ〉〉|

[]ψ[]p
| []ψ[]p 6= 0

}
,

〈〈Dηθg , ψ〉〉 = −〈〈g ,Dηθψ〉〉 , p 6= 2.
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Operator S0

Together with the spaces Hm consider the operator S. First, consider an
auxiliary operator S0 : H0 → H0, D(S0) = H0,

S0ψ =
ψ ◦ σ
η

, ψ ∈ D(S0)

where ψ ◦ σ in the composition of ψ i σ, i.e., (ψ ◦ σ)(x) = ψ(σ(x)), x ∈ R.

By construction, the operator S0 is invertible, S−1
0 : H0 → H0,

D(S−1
0 ) = H0,

S−1
0 ϕ = (ηϕ) ◦ σ−1, ϕ ∈ D(S−1

0 ).
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Properties of the operator S0

.

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31–53)
We have
DηθS0ψ = S0(ψ′), ψ ∈ H1,

The operator S0 is an isometric isomorphism of Hm and Hm,
m = 0, 1, 2.
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Operator S

By using this theorem, we extend the operator S0 to H−2. Denote this
extension by S. We have S : H−2 → H−2, D(S) = H−2,

〈〈Sg , ϕ〉〉 = 〈g ,S−1
0 ϕ〉, g ∈ D(S), ϕ ∈ D(S−1

0 ) ∩H2 = H2.

Evidently, S is also invertible, S−1 : H−2 → H−2, D(S−1) = H−2,

〈S−1f , ψ〉 = 〈〈f ,Sψ〉〉 , f ∈ D(S−1), ψ ∈ D(S0) ∩ H2 = H2.
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Properties of the operator S

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31–53)
S is an isometric isomorphism of Hm and Hm, −2 ≤ m ≤ 2;

Dηθ (Sg) = S (g ′), g ∈ Hm, −1 ≤ m ≤ 2;
〈g , ψ〉 = 〈〈Sg ,Sψ〉〉, g ∈ H−m, ψ ∈ Hm, 0 ≤ m ≤ 2;
Sδ = η(0)δ.

In particular,

1

ρ

(
k(Sg)′

)′
= D2

ηθSg − νSg = S(g ′′)− νSg

where ν = Dηθ
(
θ2 η′

η

)
.
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Space D

Let D be the space of infinitely differentiable functions with compact
supports, where

ϕn → 0 as n→∞ iff

{
∃a > 0 ∀n = 1,∞ suppϕn ∈ [−a, a]

∀m = 1,∞ ϕ
(m)
n ⇒ 0 as n→∞ on R

Let D′ be the dual space with weak convergence.
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Space S

Let S be the Schwartz space of rapidly decreasing functions on R, i.e.

S =
{
ϕ ∈ C∞(R) | ∀k = 0,∞ ∀m = 0,∞ sup

{∣∣∣xkϕ(m)
∣∣∣ | x ∈ R

}
<∞

}
where

ϕn → 0 as n→∞ iff ∀k = 0,∞ ∀m = 0,∞ xkϕ
(m)
n ⇒ 0 as n→∞ on R.

Let S′ be the dual space of tempered distributions (with weak convergence).
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Properties of the classical Sobolev spaces Hm

Theorem (S.G. Gindikin and L.R. Volevich, “Distributions and
convolution equations”, 1992)

Hm ⊂ Hn is a dense embedding, −2 ≤ n ≤ m ≤ 2.

D ⊂ S ⊂ Hm are dense embeddings, −2 ≤ m ≤ 2.
Hm ⊂ S′ ⊂ D′ are dense embeddings, −2 ≤ m ≤ 2.
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Properties of the modified Sobolev spaces Hm

Theorem (L.V.Fardigola, (MCRF) 5 (2015), 31–53)
Hm ⊂ Hn is a dense embedding, −2 ≤ n ≤ m ≤ 2.

D ⊂ Hm is a dense embedding, −2 ≤ m ≤ 2.
Hm ⊂ D′ is a dense embedding, −2 ≤ m ≤ 2.

It is shown by examples that relations between Hm and S depends on k
and ρ.
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Examples
Let k = ρ. Then η =

√
ρ, θ = 1, σ(x) = x ,

η

θ
ϕ = ηϕ,

η

θ
Dηθϕ = η

(
ϕ′ +

η′

η
ϕ

)
= ηϕ′ + η′ϕ = (ηϕ)′ ,

η

θ
D2
ηθϕ = ηDηθ

(
1

η
(ηϕ)′

)
= η

((
1

η
(ηϕ)′

)′
+
η′

η

1

η
(ηϕ)′

)
= η

(
1

η
(ηϕ)′′ − η′

η2
(ηϕ)′ +

η′

η

1

η
(ηϕ)′

)
= (ηϕ)′′.

Therefore
f ∈ Hm ⇔ √ρϕ ∈ Hm, m = −2, 2.

Hp = {ψ ∈ L2
loc(R) | ∀k = 0, p Dk

ηθψ ∈ L2
ηθ(R)},

H−p = (Hp)∗, p = 0, 1, 2.
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Examples

Thus, the following assertions hold
Let ρ(x) = cosh x , x ∈ R. Then f ∈ Hm iff

√
cosh xf ∈ Hm,

m = −2, 2. Therefore, S 6⊂ H2 and H−2 6⊂ S′.

Let ρ(x) = 1/ cosh x , x ∈ R. Then, f ∈ Hm iff f /
√

cosh x ∈ Hm,
m = −2, 2. Therefore, S ⊂ H2 i H−2 ⊂ S′.
Let α ∈ R, ρ(x) = (1 + x2)

α
2 , x ∈ R. Then, f ∈ Hm iff

(1 + x2)
α
2 f ∈ Hm, i.e., f ∈ Hm

α , m = −2, 2. Therefore,
S ⊂ H2

α ⊂ H2 ⊂ H−2 ⊂ H−2
α ⊂ S′.
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Examples

Let α ∈ R, k(x) = (1 + x2)
α+1

2 , ρ(x) = (1 + x2)
α−1

2 , x ∈ R. Then, η(x) =

(1 + x2)
α
4 , θ(x) = (1 + x2)

1
4 , σ(x) = ln

(
x +
√

1 + x2
)
, x ∈ R.

We have

η

θ
ϕ =(1 + x2)

α−1
4 ϕ,

η

θ
Dηθϕ =θ(ηϕ)′ =

α

2
x(1 + x2)

α−3
4 ϕ+ (1 + x2)

α+1
4 ϕ′,

η

θ
D2
ηθϕ =

η

θ
Dηθ

(
θ2

η
(ηϕ)′

)
= θ

(
θ2(ηϕ)′

)
=
α

2

(
1 +

α

2
x2
)

(1 + x2)
α−5

4 ϕ

+ (α + 1)x(1 + x2)
α−1

4 ϕ′ + (1 + x2)
α+3

4 ϕ′′
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Examples

Since

Hp = {ψ ∈ L2
loc(R) | ∀k = 0, p Dk

ηθψ ∈ L2
ηθ(R)},

H−p = (Hp)∗, p = 0, 1, 2.

we have

ϕ ∈ H0 ⇔ (1 + x2)
α−1

4 ϕ ∈ H0;

ϕ ∈ H1 ⇔ (1 + x2)
α−1

4 ϕ ∈ H0 and (1 + x2)
α+1

4 ϕ′ ∈ H0;

ϕ ∈ H2 ⇔ (1 + x2)
α−1

4 ϕ ∈ H0 and (1 + x2)
α+1

4 ϕ′ ∈ H0

and (1 + x2)
α+3

4 ϕ′′ ∈ H0.

L.V. Fardigola Transformation operators in control problems Sep. 5–14, 2016 29/ 80



Examples

Since

Hp = {ψ ∈ L2
loc(R) | ∀k = 0, p Dk

ηθψ ∈ L2
ηθ(R)},

H−p = (Hp)∗, p = 0, 1, 2.

we have

ϕ ∈ H0 ⇔ (1 + x2)
α−1

4 ϕ ∈ H0;

ϕ ∈ H1 ⇔ (1 + x2)
α−1

4 ϕ ∈ H0 and (1 + x2)
α+1

4 ϕ′ ∈ H0;

ϕ ∈ H2 ⇔ (1 + x2)
α−1

4 ϕ ∈ H0 and (1 + x2)
α+1

4 ϕ′ ∈ H0

and (1 + x2)
α+3

4 ϕ′′ ∈ H0.

L.V. Fardigola Transformation operators in control problems Sep. 5–14, 2016 29/ 80



Operator T̃

Consider the operator T̃ : H̃−2 → H̃−2, D(T̃) = H̃−2, T̃ = ST̃r .

Theorem

T̃ is an isomorphism of H̃m and H̃m, −2 ≤ m ≤ 2;(
D2
ηθ − r ◦ σ

)
T̃g − 2η2(0)(T̃g)(+0)Dηθδ = T̃

(
d2

dξ2
g − 2g(+0)δ′

)
,

if g ∈ H̃0 and g(+0) exists;
T̃δ′ = η(0)Dηθδ.
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−w ′′ = µ2w , L2(0,+∞)-solutions

?

6

Tr

?

6

T = STr −y ′′ + ry = µ2y , L2(0,+∞)-solutions

?

6

S

−1
ρ(kz ′)′ = µ2y , L2

ηθ(0,+∞)-solutions

µ ∈ C, r =
(
Dηθ

(
θ2 η′

η

))
◦ σ−1, η = (kρ)1/4, θ = (k/ρ)1/4,

σ(x) =
∫ x

0
dµ
θ2(µ)

, Dηθ = θ2
(

d
dx + η′

η

)
,
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Linear control systems

CONTROL
SYSTEM

- -input
(control)

output

dw

dt
= Aw + Bu, t ∈ (0,T ), (10)

where T > 0, w : [0,T ]→ H is a state of system, u : (0,T )→ H is a
control, H, H are Banach spaces, A : H → H, B : H → H are linear
operators.
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Null-controllability problems for the wave equation

Null-controllability problems for the wave equation on domains
bounded w.r.t. space variable:

C. Castro, L.V.Fardigola, H.O.Fattorini, M.Gugat, V.A.Ilin, W.Krabs,
G.Leugering, K.S.Khalina, V.I.Korobov, J.-L.Lions, E.I.Moiseev, Y. Liu, J.
Sokolowski, D.L. Russel, G.M.Sklyar, J.Vancostenoble, X.Zhang, E.Zuazua,
and many others.

Null-controllability problems for the wave equation on domains
unbounded w.r.t. space variable:

A.Avetisyan, M.I.Belishev, L.V.Fardigola, K.S.Khalina, A.Khurshudyan,
G.M.Sklyar, A.F.Vakulenko.
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Classical Sobolev spaces
Let p ∈ N ∪ {0}, Ω be a domain in R. Denote

Hp(Ω) = {ϕ ∈ L2(Ω) | ∀k = 0, p
dk

dxk
ϕ ∈ L2(Ω)},

‖ϕ‖pΩ =

 p∑
k=0

(∥∥∥∥ dk

dxk
ψ

∥∥∥∥
L2(Ω)

)2
1/2

,

H−p(Ω) = (Hp(Ω))∗,

‖f ‖−pΩ = sup

{
|〈f , ϕ〉|
‖ϕ‖p

| ‖ϕ‖p 6= 0

}
,

〈
d
dx f , ϕ

〉
Ω
is the value of the distribution f ∈ H−pΩ on the test function

ϕ ∈ Hp
Ω.
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Classical Sobolev spaces

Denote Hm = Hm(R), ‖·‖m = ‖·‖mR , 〈·, ·〉 = 〈·, ·〉R.

We have 〈
d

dx
f , ϕ

〉
= −

〈
f ,

d

dx
ϕ

〉
.

Denote by H̃m the subspace of all odd distributions in Hm, m ∈ Z.
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Spaces Hm and Hm

Let p ∈ N ∪ {0}.
Sobolev spaces Hm

Hp = {ϕ ∈ L2(R) |

∀k = 0, p
dk

dxk
ϕ ∈ L2(R)},

‖ϕ‖p =

(
p∑

k=0

∥∥∥∥ dk

dxk
ϕ

∥∥∥∥2
)1/2

,

H−p = (Hp)∗,

‖f ‖−p = sup

{
|〈f , ϕ〉|
‖ϕ‖p

| ‖ϕ‖p 6= 0

}
,

Hm ⊂ H l , m ≥ l .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Sobolev spaces Hm

Hp = {ϕ ∈ L2(R) |

∀k = 0, p xkϕ ∈ L2(R)},
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p∑

k=0

∥∥∥xkϕ∥∥∥2
)1/2

,
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Fourier transform of Hm and Hm

(Fx→σϕ) (σ) =

∫ ∞
−∞

e−iσxϕ(x) dx , ϕ ∈ H0 = H0 = L2(R),

(
F−1
σ→xψ

)
(x) =

∫ ∞
−∞

e iσxψ(σ) dx , ψ ∈ H0 = H0 = L2(R),

〈Ff , ϕ〉 = 〈f ,F−1ϕ〉,
(f ∈ H−p and ϕ ∈ Hp) or (f ∈ H−p and ϕ ∈ Hp), p ∈ N ∪ {0}.

Theorem
For each m ∈ Z the operator F is an isometric isomorphism of Hm and Hm.
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Null-controllability problems

Let U be a set of permissible controls.

Definition

A state w0 is called approximately null-controllable at a free time if
∀ε > 0 there exist Tε > 0 uε ∈ U such that a solution w of system (14)
satisfies two conditions:
w(0) = w0 and ‖w(T )‖ < ε.

-

w0 0
q q��
��
�����
�
�
�
�
�
����

(uε,Tε)
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Null-controllability problems for the wave equation with
constant coefficients
We consider the following controllability problem

wtt = wxx − q2w , x > 0, t ∈ (0,T ), (11)

w(0, t) = u(t), t ∈ (0,T ), (12)

w(x , 0) = w0
0 (x)

wt(x , 0) = w0
1 (x)

}
−→

{
w(x ,T ) = wT

0 (x)

wt(x ,T ) = wT
1 (x)

(13)

where T > 0, q ≥ 0, w : [0,T ]→ H0(0,+∞), w0 =

(
w0

0

wT
0

)
∈

H0(0,+∞)× H−1(0,+∞), wT =

(
wT

1

wT
1

)
∈ H0(0,+∞)× H−1(0,+∞).

We also assume that u ∈ U = L∞(0,T ) is a control.
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Reduced control problem

Let w(·, t), w0, wT be the odd extension for
(
w(·, t)
wt(·, t)

)
,
(
w0

0

w0
1

)
,
(
wT

0

wT
1

)
,

resp., (t ∈ [0,T ]). Then dp

dtpw : [0,T ]→ H−p, p = 0, 1, where
Hm = H̃m × H̃m−1 with the norm |||·|||m, m ∈ Z.

Our controllability problem can be reduced to the following one

dw

dt
=

(
0 1(

d
dx

)2− q2 0

)
w −

(
0

2δ′(x)

)
u, x ∈ R, t ∈ (0,T ), (14)

w(·, 0) = w0 → w(·,T ) = wT , (15)

where δ is the Dirac distribution, δ = H ′, H is the Heaviside function:
H(ξ) = 1 if ξ > 0, and H(ξ) = 0 otherwise.
Further we consider the approximate null-controllability problem for the
system (14) where w0 ∈ H0 and wT ∈ H0 are odd functions.
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Fourier transform of the control system

Denote y(·, t) = Fx→σ

(
w(·, t)
wt(·, t)

)
, y0 = Fw0, yT = FwT . Evidently,

dm

dtm y : [0,T ]→ H̃m × H̃m−1, m = 0, 1, y0 ∈ H̃0 × H̃−1 and
yT ∈ H̃0 × H̃−1. Here Hm = H̃m × H̃m−1 with the norm |||·|||m, m ∈ Z.

Applying to (14), (15) Fourier transform w.r.t. ξ, we obtain

yt =

(
0 1

−σ2 − q2 0

)
y −

√
2

π

(
0

iσu(t)

)
, σ ∈ R, t ∈ (0,T ), (16)

y(σ, 0) = y0(σ) −→ y(σ,T ) = yT (σ), σ ∈ R, (17)
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Solutions to (16), (27)

We have

yT (σ) = Σ(σ, t)

y0(σ)−
√

2

π

∫ T

0

 −
sin
(
t
√
σ2+q2

)
√
σ2+q2

cos
(
t
√
σ2 + q2

)
 u(t) dt



where Σ(σ, t) =

 cos
(
t
√
σ2 + q2

) sin
(
t
√
σ2+q2

)
√
σ2+q2

−
√
σ2 + q2 sin

(
t
√
σ2 + q2

)
cos
(
t
√
σ2 + q2

)
.

We have

|||Σ(·, t)×|||0 ≤

[
1/q if q > 0

2
√

1 + t2 if q = 0
, t ∈ R.
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σ2+q2

cos
(
t
√
σ2 + q2

)
 u(t) dt



where Σ(σ, t) =

 cos
(
t
√
σ2 + q2

) sin
(
t
√
σ2+q2

)
√
σ2+q2

−
√
σ2 + q2 sin

(
t
√
σ2 + q2

)
cos
(
t
√
σ2 + q2

)
.

We have

|||Σ(·, t)×|||0 ≤

[
1/q if q > 0

2
√

1 + t2 if q = 0
, t ∈ R.
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Operators Ψ and Ψ̂

Denote Ψ : H̃0 −→ H̃0 with D(Ψ) = H̃0
0 such that

(Ψg) (x) = F−1
σ→x

σ
(
Fg
)(√

σ2 + q2
)

√
σ2 + q2

 (x), g ∈ D(Ψ).

Denote Ψ̂ : H̃0 −→ H̃−1 with D(Ψ̂) = H̃0 such that(
Ψ̂g
)

(x) =
d

dx
F−1
σ→x

(
(F (sgn ξ g))

(√
σ2 + q2

))
(x), g ∈ D(Ψ̂).

Evidently, if q = 0, then Ψ = Id, Ψ̂ = d
dx (sgn(·)).
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Therefore

wT (x) = w(x ,T ) = E (x ,T ) ∗
[
w0(x)−

(
ΨU
Ψ̂U

)
(x)

]
(18)

where U(t) = u(t)(H(t)− H(t − T ))− u(−t)(H(t + T )− H(−t)),
t ∈ (0,+∞), ∗ is the convolution with respect to x .

Here

E (x , t) =
1√
2π

F−1
σ

(
∂/∂t 1

(∂/∂t)2 ∂/∂t

)
sin(t

√
σ2 + q2)√

σ2 + q2

=
1

2

(
∂/∂t 1

(∂/∂t)2 ∂/∂t

)[
sgn t H

(
t2 − x2

)
J0

(
q
√
t2 − x2

)]
where Jk =

∑∞
p=0

(−1)p

p!Γ(p+k+1)

(
x
2

)2p+k is the Bessel function (here Γ is the
Euler gamma function).
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Since the Fourier transform operator F is an isomorphic isomorphism of
Hm and Hm,
we have

|||E (·, t)∗|||0 ≤

[
1/q if q > 0

2
√

1 + t2 if q = 0
, t ∈ R.
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Uniqueness and well-posedness

Remark It is well known that the solution to problem (14), (15) is unique.

Remark One can see that∣∣∣∣∣∣∣∣∣∣∣∣(w(·, t)
wt(·, t)

)∣∣∣∣∣∣∣∣∣∣∣∣0 ≤ Q(T )
(∣∣∣∣∣∣w0

∣∣∣∣∣∣0 + ‖u‖L∞(0,T )

)
, t ∈ [0,T ],

where Q(T ) > 0. Therefore, problem (14), (15) is well posed.

L.V. Fardigola Transformation operators in control problems Sep. 5–14, 2016 46/ 80



Uniqueness and well-posedness

Remark It is well known that the solution to problem (14), (15) is unique.

Remark One can see that∣∣∣∣∣∣∣∣∣∣∣∣(w(·, t)
wt(·, t)

)∣∣∣∣∣∣∣∣∣∣∣∣0 ≤ Q(T )
(∣∣∣∣∣∣w0

∣∣∣∣∣∣0 + ‖u‖L∞(0,T )

)
, t ∈ [0,T ],

where Q(T ) > 0. Therefore, problem (14), (15) is well posed.

L.V. Fardigola Transformation operators in control problems Sep. 5–14, 2016 46/ 80



Null-controllability problems at a free time

According to definition,
a state w0 ∈ H0 is approximately null-controllable at a free time iff

∀n ∈ N ∃Tn > 0 ∃un ∈ L∞(0,Tn) |||wn(·,Tn)|||0 < 1/n, (19)

where wn is the solution of (14), (15) with T = Tn and u = un.

Put Un(t) = un(t)(H(t)−H(t −Tn))− un(−t)(H(t −Tn)−H(t)), n ∈ N.
Condition (19) is equivalent to

∀n ∈ N ∃Tn > 0 ∃Un ∈ H̃0 ∩ L∞(R)


suppUn ⊂ [−Tn,Tn]

wn
0 = ΨUn → w0

0 as n→∞

wn
1 = Ψ̂Un → w0

1 as n→∞
,

E (x ,−Tn) ∗wn(x ,Tn) = w0(x)−
(

ΨUn
Ψ̂Un

)
(x).
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Difference between the cases q = 0 and q > 0

q = 0:


wn

0 = ΨUn = Un → w0
0 as n→∞

wn
1 = Ψ̂Un = (sgn(·)Un)′ → w0

1 as n→∞
↘ ‖(
sgn(·)w0

0

)′

q > 0:

?
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Properties of the operators Ψ and Ψ̂

(Ψg) (x) = F−1
σ→x

σ
(
Fg
)(√

σ2 + q2
)

√
σ2 + q2

 (x), g ∈ D(Ψ) = H̃0,

(
Ψ̂g
)

(x) =
d

dx
F−1
σ→x

(
(F (sgn ξ g))

(√
σ2 + q2

))
(x), g ∈ D(Ψ̂) = H̃0.

For q = 0, Ψ = Id, Ψ̂ = d
dx (sgn(·)), and their properties are evident.

Theorem
Let q > 0.

Ψ and Ψ̂ are bounded;

R(Ψ) = H̃0 and R(Ψ̂) = H̃−1;

N(Ψ) =
{
g ∈ H̃0

0 | Fg ⊂ [−q, q]
}
;

N(Ψ̂) =
{
g ∈ H̃0

0 | F(sgn t g) ⊂ [−q, q]
}
;

Ψ and Ψ̂ are not invertible.
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Properties of Ψ̂(N(Ψ)) and Ψ(N(Ψ̂))

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748–773)

Let q > 0, n = 0,∞. Then sgn x |x |ne−q|x | ∈ Ψ̂(N(Ψ)) (the closure is
considered in H̃−1).

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748–773)

Let q > 0, n = 0,∞. Then sgn x |x |ne−q|x | ∈ Ψ(N(Ψ̂)) (the closure is
considered in H̃0).
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Properties of Ψ̂(N(Ψ)) and Ψ(N(Ψ̂))

Since the system of elements {sgn x |x |ne−q|x |}∞n=0 is closed in H̃0 and
H̃−1, we have two theorems:

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748–773)

Let q > 0. Then H̃−1 is the closure of Ψ̂(N(Ψ)) with respect to to the
norm ‖·‖−1.

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748–773)

Let q > 0. Then H̃0 is the closure of Ψ(N(Ψ̂)) with respect to to the norm
‖·‖0.
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Approximate null-controllability problems at a free time

Let q > 0, w0 =

(
w0

0

w0
1

)
.

H̃0 = Ψ(N(Ψ̂))⇔∃{gn
0 }∞n=1 ⊂ N(Ψ̂)

{
wn

0 = Ψgn
0 → w0

0

0 = Ψ̂gn
0 → 0

as n→∞,

H̃−1 = Ψ̂(N(Ψ))⇔∃{gn
1 }∞n=1 ⊂ N(Ψ)

{
0 = Ψgn

1 → 0

wn
1 = Ψ̂gn

1 → w0
1

as n→∞.

For gn = gn
0 + gn

1 , n ∈ N, we have gn ∈ H̃0, n ∈ N, and{
Ψgn = Ψgn

0 → w0
0

Ψ̂gn = Ψgn
1 → w0

1

as n→∞.
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Approximate null-controllability problems at a free time
We can find a sequence {Un}∞n=0 ⊂ H̃0 ∩ L∞(R) such that
suppUn ⊂ [−Tn,Tn], n ∈ N, and

‖gn − Un‖0 → 0 as n→∞.

Let wn be the solution to control system (14), (15) with T = Tn and
u(t) = Un(t), t ∈ [0,Tn], n ∈ N.
Since the operators Ψ and Ψ̂ are bounded, we have

∣∣∣∣∣∣∣∣∣wT
∣∣∣∣∣∣∣∣∣0 ≤ 1

q

∣∣∣∣∣∣∣∣∣∣∣∣w0 −
(

ΨUn

Ψ̂Un

)∣∣∣∣∣∣∣∣∣∣∣∣0
≤ 1

q

(∣∣∣∣∣∣∣∣∣∣∣∣w0 −
(

Ψgn

Ψ̂gn

)∣∣∣∣∣∣∣∣∣∣∣∣0 +

∣∣∣∣∣∣∣∣∣∣∣∣(Ψ(gn − Un)

Ψ̂(gn − Un)

)∣∣∣∣∣∣∣∣∣∣∣∣0
)
→ 0 as n→∞.

w(x ,Tn) = E (x ,Tn) ∗
[
w0(x)−

(
ΨUn

Ψ̂Un

)
(x)

]
and |||E (·,Tn)∗|||0 ≤ 1

q .
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Necessary and sufficient conditions for approximate
null-controllability at a free time
Thus we obtain the following theorem

Theorem (L.V.Fardigola, ESAIM: COCV 18 (2012), 748–773)

Let q > 0. Each state w0 ∈ H is approximately null-controllable at a free
time.

By analysing the d’Alembert formula for the solution of the wave equation,
we obtain the following theorem

Theorem ( L.V.Fardigola and G.M.Sklyar, JMAA 276(2002), No. 2,
109–134)

Let q = 0. A state w0 ∈ H is approximately null-controllable at a free time
iff

w0
1 −

(
sgn x w0

0

)′
= 0. (20)
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Example
Let q > 0, w0

0(x) = e−q|x | sgn x , w0
1(x) = 0, x ∈ R.

Consider the following control problem

wtt = wxx − q2w − 2u(t)δ′(x), x ∈ R, t ∈ (0,T ),

w(·, 0) = w0
0, wt(·, 0) = w0

1.

For n ≥
√

2
q , set Tn = n6, un(t) = n sin(t/n)

t , t ∈ [0,Tn].
Let wn be the solution to the control problem with T = Tn and u = un.
Then ∣∣∣∣∣∣∣∣∣∣∣∣(wn(·,Tn)

wt(·,Tn)

)∣∣∣∣∣∣∣∣∣∣∣∣0 ≤ 1 + 2q5/2

q5/2n2
→ 0 as n→∞.

Thus the state w0 =

(
w0

0

w0
1

)
is approximately null-controllable at a free

time.
Moreover, the pairs (Tn, un), n ≥

√
2
q , solve the approximate

null-controllability problem at a free time.
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Null-controllability problems for the wave equation with
variable coefficients

Now we consider the following controllability problem

ztt =
1

ρ(ξ)
(k(ξ)zξ) ξ + γ(ξ)z , ξ > 0, t ∈ (0,T ), (21)

z(0, t) = v(t), t ∈ (0,T ), (22)

z(ξ, 0) = z0
0 (ξ)

zt(ξ, 0) = z0
1 (ξ)

}
−→

{
z(ξ,T ) = zT0 (ξ)

zt(ξ,T ) = zT1 (ξ)
(23)

where T > 0 is a constant; ρ, k , γ, w0
0 , and w0

1 are given functions; v ∈
L∞(0,T ) is a control; ρ, k , γ ∈ C 1[0,+∞), ρ, k are positive on [0,+∞).
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Assume η = (kρ)1/4, η ∈ C 2(R), θ = (k/ρ)1/4,

σ(ξ) =

∫ ξ

0

dµ

θ2(µ)
, ξ ∈ R, and σ(ξ)→ +∞ as ξ → +∞,

Dηθ = θ2

(
d

dx
+
η′

η

)
.

Then
1

ρ

(
kf ′
)′

= D2
ηθf −

(
Dηθ

(
θ2 η

′

η

))
f .

Let γ̂ be the even extension of γ, p = Dηθ
(
θ2 η′

η

)
.

We assume also that

∃q = const ≥ 0

(
r = p ◦ σ−1 − q2 ∈ C 1[0,+∞) ∩ L2(0,+∞)

and
∫ ∞

0
λ|r(λ)| dλ <∞

)
.
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Let γ̂ be the even extension of γ, p = Dηθ
(
θ2 η′

η

)
.

We assume also that

∃q = const ≥ 0

(
r = p ◦ σ−1 − q2 ∈ C 1[0,+∞) ∩ L2(0,+∞)

and
∫ ∞

0
λ|r(λ)| dλ <∞

)
.
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Spaces Hm and Hm

Classical Sobolev spaces

Hp = {ϕ ∈ L2(R) |

∀k = 0, p
dk

dxk
ϕ ∈ L2(R)},

‖ϕ‖p =

(
p∑

k=0

∥∥∥∥ dk

dxk
ϕ

∥∥∥∥2

L2(R)

)1/2

,

H−p = (Hp)∗,

‖f ‖−p = sup

{
|〈f , ϕ〉|
‖ϕ‖p

| ‖ϕ‖p 6= 0

}
,

〈
d

dx
f , ϕ

〉
= −

〈
f ,

d

dx
ϕ

〉
, p 6= 2.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Modified Sobolev spaces

Hp = {ψ ∈ L2
loc(R) |

∀k = 0, p Dk
ηθψ ∈ L2

ηθ(R)},

[]ψ[]p =

(
p∑

k=0

(∥∥∥Dk
ηθψ
)∥∥∥2

L2
ηθ(R)

)1/2

,

H−p = (Hp)∗,

[]g []−p = sup

{
|〈〈g , ψ〉〉|

[]ψ[]p
| []ψ[]p 6= 0

}
,

〈〈Dηθg , ψ〉〉 = −〈〈g ,Dηθψ〉〉 , p 6= 2.
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Reduced control problem

Put H̃m = {ϕ ∈ Hm : ϕ is odd}, −2 ≤ m ≤ 2, IHI = H̃0 × H̃−1 with the
norm [[]·[]].

Let z(·, t), z0, zT be the odd extension w.r.t. ξ for z(·, t),
(
z0

0

z0
1

)
,
(
zT0
zT1

)
,

resp., (t ∈ [0,T ]).
Controllability problem (21)–(23) can be reduced to the following one

ztt = D2
ηθz + pz− 2η2(0)vDηθδ, ξ ∈ R, t ∈ (0,T ), (24)

(
z(·, 0)
zt(·, 0)

)
=

(
z0

0

z0
1

)
= z0 →

(
z(·,T )
zt(·,T )

)
=

(
zT0
zT1

)
= zT , (25)

where dp

dtp z : [0,T ]→ H̃−p, p = 0, 1, 2, z0, zT ∈ IHI, δ is the Dirac
distribution, δ = H ′, H is the Heaviside function: H(ξ) = 1 if ξ > 0, and
H(ξ) = 0 otherwise.
We call this problem the main control problem.
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Control system for the wave equation with constant
coefficients

Put H̃m = {ϕ ∈ Hm : ϕ is odd}, −2 ≤ m ≤ 2, H = H̃0 × H̃−1 with the
norm |||·|||.

Consider the auxiliary control problem

wtt = wxx − q2w − 2uδ′, x ∈ R, t ∈ (0,T ), (26)

(
w(·, 0)
wt(·, 0)

)
=

(
w0

0

w0
1

)
= w0 →

(
w(·,T )
wt(·,T )

)
=

(
wT

0

wT
1

)
= wT , (27)

where dp

dtpw : [0,T ]→ H̃−p, p = 0, 1, 2, w0,wT ∈ H, δ is the Dirac
distribution with respect to x .
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Scheme of study

ztt = D2
ηθz + pz− 2η2(0)vDηθδ in H̃−2

?

6

S

?

6

T̃ = ST̃r ytt = yλλ − ry − 2uδ′ in H̃−2

?

6

T̃r

wtt = wxx − q2w − 2uδ′ in H̃−2

p(ξ) = r
(
σ(ξ)

)
+ q2, ξ ∈ R.
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Transformations between solutions to the main and the
auxiliary control problems
Theorem
Let w be a solution to the auxiliary control problem (i. e., problem (26),
(27)) for some u ∈ L∞(0,T ) and w0 ∈ H̃. Let z(·, t) = T̃w(·, t),
t ∈ [0,T ].

Then, z is a solution to the main control problem (i. e., problem
(24), (25)) with z0 = T̃w0 and

η(0)v(t) = u(t) +

∫ ∞
0

K (0, ξ)w(ξ, t) dξ, t ∈ [0,T ]. (28)

Moreover, [[](
z(·, t)
zt(·, t)

)[]]0

≤ C0

∣∣∣∣∣∣∣∣∣∣∣∣(w(·, t)
wt(·, t)

)∣∣∣∣∣∣∣∣∣∣∣∣0 , t ∈ [0,T ], (29)

‖v‖L∞(0,T ) ≤ Q0(T )
(
‖u‖L∞(0,T ) +

∣∣∣∣∣∣w0
∣∣∣∣∣∣0) , (30)

where C0 > 0 and Q0(T ) > 0.
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Sketch of proof

Since z(·, t) = T̃w(·, t), t ∈ [0,T ], and

T̃ is an isomorphism of H̃m and H̃m, −2 ≤ m ≤ 2,

we have [[](
z(·, t)
zt(·, t)

)[]]0

≤ C0

∣∣∣∣∣∣∣∣∣∣∣∣(w(·, t)
wt(·, t)

)∣∣∣∣∣∣∣∣∣∣∣∣0 , t ∈ [0,T ],

i.e., (29) holds.
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Sketch of proof
Now, let us prove (28) and (30).

We have

z(ξ, t) =
(
T̃w(·, t)

)
(ξ)

=
1

η(ξ)

(
w(λ, t) +

∫ ∞
|λ|

K (|λ|, x)w(x , t) dx

)∣∣∣∣∣
λ=σ(ξ)

, x ∈ R, t ∈ [0,T ].

σ(ξ) =
∫ ξ

0
dµ
θ2(µ)

, ξ ∈ R.

Therefore

v(t) = z(+0, t) =
1

η(0)

(
u(t) +

∫ ∞
0

K (0, x)w(x , t) dx

)
, t ∈ [0,T ].

u(t) = w(+0, t), t ∈ [0,T ],

i.e., (28) is true.
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)∣∣∣∣∣
λ=σ(ξ)

, x ∈ R, t ∈ [0,T ].

σ(ξ) =
∫ ξ

0
dµ
θ2(µ)

, ξ ∈ R.

Therefore

v(t) = z(+0, t) =
1

η(0)

(
u(t) +

∫ ∞
0

K (0, x)w(x , t) dx

)
, t ∈ [0,T ].

u(t) = w(+0, t), t ∈ [0,T ],

i.e., (28) is true.
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Sketch of proof
Therefore,

|v(t)| ≤ 1

η(0)

(
|u(t)|+ ‖K (0, ·)‖0 ‖w(·, t)‖0

)
, t ∈ [0,T ]

We have(
‖K (0, ·)‖0

)2
≤ M0

∫ ∞
0

(
σ0

(x
2

))2
dx ≤ 2M0σ0(0)

∫ ∞
0

xr(x) dx = C

|K (y)| ≤ M0σ0

( y1+y2
2

)
, y2 ≥ y1 ≥ 0, σ0(x) =

∫∞
x |r(ξ)| dξ, x > 0.

Hence,

‖v‖L2(0,T ) ≤
1

η(0)

(
‖u‖L2(0,T ) + CQ(t)

(∣∣∣∣∣∣w0
∣∣∣∣∣∣0 + ‖u‖L∞(0,T )

))
‖w(·, t)‖0 ≤ Q(T )

(∣∣∣∣∣∣w0
∣∣∣∣∣∣0 + ‖u‖L∞(0,T )

)
, t ∈ [0,T ],

i.e., (30) holds. �
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Transformations between solutions to the main and the
auxiliary control problems
Theorem
Let z be a solution to the main control problem (i. e., problem (24), (25))
for some v ∈ L∞(0,T ) and z0 ∈ IHI. Let w(·, t) = T̃−1z(·, t), t ∈ [0,T ].

Then, w is a solution to the auxiliary control problem (i. e., problem (26),
(27)) with w0 = T̃−1z0 and

u(t) = η(0)v(t) +

∫ ∞
0

L(0, x)S−1z(x , t) dx , t ∈ [0,T ]. (31)

Moreover, ∣∣∣∣∣∣∣∣∣∣∣∣(w(·, t)
wt(·, t)

)∣∣∣∣∣∣∣∣∣∣∣∣0 ≤ C1

[[](
z(·, t)
zt(·, t)

)[]]0

, t ∈ [0,T ], (32)

‖u‖L∞(0,T ) ≤ Q1(T )
(
‖v‖L∞(0,T ) +

[[]
z0
[]]0)

, (33)

where C1 > 0 and Q1(T ) > 0.
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Sketch of proof
The proof of conditions (31) and (32) is similar to the proof of the
appropriate conditions of the previous theorem.

Let us prove (33).
Since w(·, t) = T̃−1z(·, t) = T̃−1

r S−1z(·, t), t ∈ [0,T ], we have

u(t) = η(0)v(t)−
∫ ∞

0
K (0, x)w(λ, t) dx

w depends on w0 and u.

Therefore,

u(t) = g(t) +

∫ t

0
P(t − µ)u(µ) dµ, t ∈ [0,T ],

where g depends on v , w0, K , and P depends on K ,

g ∈ L∞(0,T ) and P ∈ L∞(0,T ).
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Sketch of proof
Thus, u is determined by the integral equation

u(t) = g(t) +

∫ t

0
P(t − µ)u(µ) dµ, t ∈ [0,T ]. (34)

It follows from
Theorem (Gronwall). Let y ∈ L1(0,T ), y(t) ≥ 0, t ∈ (0,T ),
and y(t) ≤ C1 + C2

∫ t
0 y(λ) dλ, t ∈ (0,T ), for some constants

C1,C2 > 0. Then y(t) ≤ C1e
tC2 , t ∈ (0,T ).

that the equation

u(t) =

∫ t

0
P(t − µ)u(µ) dµ, t ∈ [0,T ],

has only trivial solution in L2(0,T ).
By using the Fredholm alternative, we see that equation (34) has the
unique solution in L2(0,T ).
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Sketch of proof
It follows from (34) that

|u(t)| ≤ ‖g‖L∞(0,T ) + ‖P‖L∞(0,T )

∫ t

0
|u(µ)| dµ, t ∈ [0,T ].

Applying again
Theorem (Gronwall). Let y ∈ L1(0,T ), y(t) ≥ 0, t ∈ (0,T ),
and y(t) ≤ C1 + C2

∫ t
0 y(λ) dλ, t ∈ (0,T ), for some constants

C1,C2 > 0. Then y(t) ≤ C1e
tC2 , t ∈ (0,T ).

we obtain

|u(t)| ≤ ‖g‖L∞(0,T ) e
t‖P‖L∞(0,T ) , t ∈ [0,T ],

‖g‖L∞(0,t) depends on
∣∣∣∣∣∣w0

∣∣∣∣∣∣0 and ‖v‖L∞(0,t).

Therefore,

‖u‖L∞(0,T ) ≤ Q1(T )
(
‖v‖L∞(0,T ) +

[[]
z0
[]]0)

for some Q1(T ) > 0. �
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Uniqueness and well-posedness of the main control problem

Remark It is well known that the solution to the auxiliary control problem
(i. e., problem (26), (27)) is unique. Therefore, the last two theorems yield
uniqueness of solution to the main control problem (i. e., problem (24),
(25)).

Remark It follows from the last two theorems that[[](
z(·, t)
zt(·, t)

)[]]0

≤ Q2(T )
([[]

z0
[]]0

+ ‖v‖L∞(0,T )

)
, t ∈ [0,T ],

where Q2(T ) > 0. Therefore, the main control problem (i. e., problem
(24), (25)) is well posed.
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Necessary and sufficient conditions of approximate
null-controllability for the main control problem at a free
time

Thus we obtain the following theorem

Theorem
Let q > 0. Each state z0 ∈ IHI of the main control problem (i. e., problem
(24), (25)) is approximately null-controllable at a free time.

Theorem
Let q = 0. A state z0 ∈ IHI of the main control problem (i. e., problem
(24), (25)) is approximately null-controllable at a free time iff

z0
1 − T̃

(
sgn(·) T̃−1z0

0

)′
= 0. (35)
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(24), (25)) is approximately null-controllable at a free time.

Theorem
Let q = 0. A state z0 ∈ IHI of the main control problem (i. e., problem
(24), (25)) is approximately null-controllable at a free time iff

z0
1 − T̃

(
sgn(·) T̃−1z0

0

)′
= 0. (35)
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Example

Consider the following control problem

ztt = (1 + ξ) ((1 + ξ) zξ)ξ −
4 + 3ξ

4(1 + ξ)
z , ξ > 0, t ∈ (0,T )

z(0, t) = v(t), t ∈ (0,T ),

z(ξ, 0) = z0
0 (ξ) = 2I2

(
2√

1 + ξ

)
, ξ > 0,

zt(ξ, 0) = z0
1 (ξ) = −I2

(
2√

1 + ξ

)
, ξ > 0,

where v ∈ L∞(0,T ) is a control.

L.V. Fardigola Transformation operators in control problems Sep. 5–14, 2016 72/ 80



Example
Let us construct the spaces Hm, m = 2,−2, where this problem is
considered and obtain the reduced control problem.

We have ρ(x) = 1
1+|ξ| , k(x) = 1 + |ξ|. Then,

η(ξ) = (k(ξ)ρ(ξ))1/4 = 1,

θ(ξ) = (k(ξ)/ρ(ξ))1/4 =
√

1 + |ξ|,

σ(ξ) = sgn ξ ln(1 + |ξ|),

Dηθ = θ2(ξ)

(
d

dξ
+
η′

η

)
= (1 + |ξ|) d

dξ
.

(Sψ)(ξ) = ψ(σ(ξ)), ψ ∈ Hm, 〈〈Sg , ϕ〉〉 = 〈g ,S−1ϕ〉, g ∈ H−m, ϕ ∈ Hm.
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Example

We have

Dηθϕ =(1 + |ξ|)ϕ′,

D2
ηθϕ =(1 + |ξ|) d

dξ
((1 + |ξ|)ϕ) = (1 + |ξ|)ϕ′ sgn ξ + (1 + |ξ|)2ϕ′′

Hence

ϕ ∈ Hm ⇔ Dm
ηθϕ ∈ L2

ηθ(R)⇔ (1 + |ξ|)mϕ(m) ∈ L2
ηθ(R), m = 0, 1, 2,

H−m = (Hm)∗ , m = 0, 1, 2,

〈〈f , ϕ〉〉 =
〈
S−1f ,S−1ϕ

〉
.

where L2
ηθ(R) is the space of functions square-integrable on R with the

weight η2/θ2.
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Example

Let z(·, t), z0
0, z

0
1 be the odd extension w.r.t. ξ for z(·, t), z0

0 , z
0
1 , resp.,

(t ∈ [0,T ]).

The control problem can be reduced to the following one

ztt = D2
ηθz + p(ξ)z− 2η2(0)v(t)Dηθδ(ξ), ξ ∈ R, t ∈ (0,T ),

z(·, 0) = z0
0, zt(·, 0) = z0

1,

where dp

dtp z : [0,T ]→ H̃−p, p = 0, 1, 2, z0
0 ∈ H̃0, z0

1 ∈ H̃−1,

p(ξ) =
4 + 3|ξ|

4(1 + |ξ|)
.

We call this problem the main control problem.
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Example

We have (
p ◦ σ−1

)
(λ) =

3

4
+ e−|λ|, λ ∈ R,

p(ξ) =
4 + 3|ξ|

4(1 + |ξ|)
, σ−1(λ) =

(
e−|λ| − 1

)
sgnλ.

Hence q =
√

3
2 > 0, r(λ) = e−|λ|, λ ∈ R. ∫ ∞

0
λr(λ) dλ <∞.
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Example

Denote w(·, t) = T̃−1z(·, t), t ∈ [0,T ], w0
0 = T̃−1z0

0, w
0
1 = T̃−1z0

1.

Then we obtain the auxiliary control problem

wtt = wxx −
3

4
w − 2uδ′, x ∈ R, t ∈ (0,T ),

w(·, 0) = w0
0, wt(·, 0) = w0

1,

where dp

dtpw : [0,T ]→ H̃−p, p = 0, 1, 2, w0
0 ∈ H̃0, w0

1 ∈ H̃−1,

u(t) = v(t) +

∫ ∞
0

L(0, λ)z(e−λ − 1, t) dλ.

L(y) =
∂

∂y1
J0

(
2

√
e−

y2
2

(
e−

y1
2 − e−

y2
2

))
, y2 ≥ y1 ≥ 0.
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Example

Calculating w0
0 and w0

1, we obtain

w0
0(x) = e−|x | sgn x and w0

1(x) = −1

2
e−|x | sgn x , x ∈ R.

For un(t) = e−t/2, t ∈ [0,Tn], we obtain that

wn(x , t) = e−t/2e−|x | sgn x , x ∈ R, t ∈ [0,Tn],

is the solution to the auxiliary control problem with u = un and T = Tn.

Thus the state w0 =

(
w0

0

w0
1

)
is approximately null-controllable at a free

time.
Moreover, the pairs (Tn, un) (Tn →∞ as n→∞), solve the approximate
null-controllability problem at a free time.
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Example
Since zn(·, t) = T̃wn(·, t), t ∈ [0,Tn], we have

zn(ξ, t) = 2e−t/2I2

(
2√

1 + |ξ|

)
sgn ξ, ξ ∈ R, t ∈ [0,Tn],

and zn is the solution to the main control problem with T = Tn and

v(t) = vn(t) = un(t)+

∫ ∞
0

K (0, x)wn(x , t) dx = 2I2(2)e−t/2, t ∈ [0,Tn].

K (y) =
∂

∂y2
I0

(
2

√
e−

y1
2

(
e−

y1
2 − e−

y2
2

))
, y2 ≥ y1 ≥ 0.

Thus the state z0 =

(
z0

0

z0
1

)
is approximately null-controllable at a free time.

Moreover, the pairs (Tn, vn) (Tn →∞ as n→∞), solve the approximate
null-controllability problem at a free time.
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Moreover, the pairs (Tn, vn) (Tn →∞ as n→∞), solve the approximate
null-controllability problem at a free time.
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