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EM waveguides. State of the art
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[V’66], [ML’71],
[NF’72]

Wiener-Hopf
Mode matching

[IKS’91], [GI’13]
ε, µ = const · I

[BDS’99], [BDS’00],
[D’07]

ε(y), µ(y)
block-diagonal

An actual problem is to extend the class of electromagnetic
waveguides admitting a mathematically accurate investigation:
geometry and filling medium.



The Maxwell system

3 / 17

• The stationary Maxwell system

iε(x)−1rotu2(x)− ku1(x) = f(x), −idiv(µ(x)u2(x)) = 0,

−iµ(x)−1rotu1(x)− ku2(x) = 0, idiv(ε(x)u1(x)) = h(x). (1)

Boundary conditions

u1
τ (x) = 0, (µu2)ν(x) = 0. (2)

u1 and u2 are electric and magnetic vectors;
ε and µ are dielectric and magnetic permittivity matrices.

• The system (1) is over-determined. Compatibility condition
(charge conservation law)

div (ε(x)f(x))− ikh(x) = 0. (3)



Elliptization
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• Augmented Maxwell system, [O’56],[GK’74], [P’84], [BS’90].

iε−1rotu2+i∇a2 − ku1 = f1, −idiv(µu2)−ka1 = h1,

−iµ−1rotu1−i∇a1 − ku2 = f2, idiv(εu1)−ka2 = h2 (4)

with boundary conditions

−u1
τ2
= g1, u1

τ1
= g2, (µu2)ν = g3, a2 = g4 (5)

is elliptic and self-adjoint with respect to a Green formula.

• Theory of self-adjoint problems for elliptic systems in domains
with several cylindrical ends. Such a theory was (firstly)
developed in [NP’91].

• “Return” to the original Maxwell system.

For empty waveguide (ε = µ = I) with several cylindrical ends the
plan was implemented in [PP’14].



Waveguide

5 / 17

G ⊂ R
3, coinciding outside a large ball with the union of

non-overlapping semicylinders G∩Πq
+ = {(yq, zq) : yq ∈ Ωq, zq > 0},

q = 1, . . . , T < ∞.



Permittivity matrices ε and µ
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• Dielectric and magnetic permittivity

G ∋ x 7→ ε(x), µ(x)

are positive-definite 3× 3 matrix valued smooth functions.

• In every cylindrical end G ∩ Πq
+ = {(yq, zq) : yq ∈ Ωq, zq > 0}

the matrices ε(yq, zq) and µ(yq, zq) converge as zq → +∞ to
positive-definite 3× 3 matrix valued smooth functions

Ωq ∋ yq 7→ εq(yq), µq(yq).

• Exponential convergence rate. For a δ > 0 the estimates

|ε(yq, zq)− εq(yq)|+ |∇(ε(yq, zq)− εq(yq))| = O(exp(−δzq)),

|µ(yq, zq)− µq(yq)|+ |∇(µ(yq, zq)− µq(yq))| = O(exp(−δzq)),

hold as zq → +∞, uniformly with respect to yq ∈ Ωq.

• No other restrictions are imposed on the matrices ε and µ.



Continuous and point spectrum
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• A solution U to the homogeneous problem (1), (2):
U(x) ≤ Const (|x|+ 1)N , U /∈ L2(G) is by definition a
continuous spectrum eigenfunction (CSE). The number k
belongs to the continuous spectrum of the problem (1), (2).
Denote by Ec(k) the linear hull of CSEs.

• A solution U ∈ L2(G) to the homogeneous problem (1), (2) is
by definition an eigenfunction. The corresponding number k is
an eigenvalue. Denote by Ep(k) the eigenspace.
The eigenvalues are isolated and have finite multiplicities.
The set of eigenvalues is called the point spectrum.

• To introduce the scattering matrix we are to choose a basis in
the space Ec(k) with elements, having a specific asymptotics.

• Such an asymptotics is described in terms of incoming and
outgoing waves.



Incoming and outgoing waves
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• Consider the model problem of the form (1), (2) in a cylinder
Πq = Ωq × R with matrices εq(yq) and µq(yq).

• Waves are solutions to the model problem of the form

exp(iλzq)
κ−1
∑

r=0

(izq)rϕ(κ−1−r)(yq), (6)

with a real λ and κ ≥ 1. A solution (6) with κ > 1 may exist
only for isolated “threshold” values of k.

Proposition 1. The space W q, spanned by solutions of the
form (6), has an even dimension 2ςq. There exists a basis in
W q, consisting of ςq “incoming” and ςq “outgoing” waves.

• Incoming (outgoing) waves bring energy from +∞ (to +∞).



Waves in G
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• Let η ∈ C∞(R) be a smooth cut-off function such that
0 ≤ η(t) ≤ 1 with t ∈ R, η(t) = 0 with t < 0, η(t) = 1 with
t > 1.

• For every wave w ∈ W q introduce a function

G ∩ Πq
+ ∋ (yq, zq) 7→ η(zq − T )w(yq, zq),

and extend it by zero to the domain G. All functions
constructed by this procedure are called waves in G.

• The waves in G, corresponding to basis incoming (outgoing)
waves in the spaces W 1, . . . ,W T , we call incoming (outgoing),
enumerate with a single index, and denote by u+

1 , . . . , u
+
Υ

(u−
1 , . . . , u

−
Υ).



Scattering matrix (when k is not an eigenvalue)
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Theorem 2. Let k belong to the continuous spectrum of the
problem (1), (2), and k be not an eigenvalue. Then in the space
Ec(k) of contionuous spectrum eigenfunctions there exists a basis
Y +
1 , . . . , Y +

Υ with an asymptotics

Y +
j (x) = u+

j +
Υ
∑

l=1

sjlu
−
l +O(e−α|x|), j = 1, . . . ,Υ, (7)

as |x| → ∞, where α > 0 is a sufficiently small number. The
matrix s with elements sjl is unitary.

The matrix s, introduced in the Theorem 2, is called the scattering
matrix of the problem (1), (2).



Scattering matrix

11 / 17

Theorem 3. Let k belong to the continuous spectrum and be an
eigenvalue of the problem (1), (2) (obviously, Ep(k) ⊂ Ec(k)).
Then in the quotient space Ec(k)/Ep(k) there exists a basis with
representatives Y +

1 , . . . , Y +
Υ , subject to an asymptotics

Y +
j (x) = u+

j +
Υ
∑

l=1

sjlu
−
l +O(e−α|x|), j = 1, . . . ,Υ,

as |x| → ∞, where α > 0 is a sufficiently small number. The
matrix s with elements sjl does not depend on the choice of the
representatives and is unitary.

The matrix s, introduced in the Theorem 3, is called the scattering
matrix of the problem (1), (2).



The weighted Sobolev space
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Introduce a positive function ρα ∈ C∞(G):

ρα(y
q, zq) = exp(αzq), (yq, zq) ∈ G ∩ Πq

+,

for q = 1, . . . , T , with the number α from (7).
Denote by H l

α(G), l ≥ 0, the closure of C∞
c (G) in the norm

‖u;H l
α(G)‖ := ‖ραu;H

l(G)‖ =
(

l
∑

|σ|=0

∫

G

|Dσ(ραu)|
2 dx

)1/2
.

The space of vector valued functions with d components in H l
α(G)

is denoted by H l
α(G;Cd)



The radiation principle (when k is not an

eigenvalue)
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Theorem 4. Suppose k is not an eigenvalue of the problem (1),
(2). Let f ∈ H l

α(G;C3), h ∈ H l
α(G;C) satisfy compatibility

condition (3). Then there exists a unique solution U = (u1, u2) to
the problem (1), (2), subject to the radiation conditions

V := U −
Υ
∑

j=1

cju
−
j ∈ H l+1

α (G;C6).

Here cj = i(F, Y −
j )G with F := (εf, 0), Y −

j :=
∑Υ

l=1(s
−1)jlY

+
l , and

Y +
l from the Theorem 2. The estimate

‖V ;H l+1
α (G;C6)‖+

Υ
∑

j=1

|cj | ≤ const(‖f ;H l
α(G;C3)‖+ ‖h;H l

α(G;C)‖)

holds.



The radiation principle
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Theorem 5. Let Z1, . . . , Zd be a basis of Ep(k) an let f ∈ H l
α(G;C3),

h ∈ H l
α(G;C) satisfy compatibility condition (3) and orthogonality conditions

(F,Zj)G = 0, j = 1, . . . , d, where F := (εf, 0). Then there exists a solution
U = (u1, u2) to the problem (1), (2), subject to the radiation conditions

V := U −

Υ
∑

j=1

cju
−

j ∈ H l+1
α (G;C6).

Here cj = i(F, Y −

j )G with Y −

j :=
∑Υ

l=1
(s−1)jlY

+

l , and Y +

l from the Theorem 3.
The solution U is defined up to an arbitrary summand in Ep(k) and

‖V ;H l+1
α (G;C6)‖+

Υ
∑

j=1

|cj | ≤

≤ const(‖f ;H l
α(G;C3)‖+ ‖h;H l

α(G;C)‖+ ‖ραV ;L2(G;C6)‖). (8)

The solution U 0, satisfying (U 0, Zj)G = 0, j = 1, . . . , d, is unique; for U 0 the
estimate (8) holds with the right-hand side changed by
const(‖f ;H l

α(G;C3)‖+ ‖h;H l
α(G;C)‖).
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