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Uncertainty Principles in Fourier Analysis

Let f ∶ R→ C have well-defined Fourier transform f̂ ∶ R→ C

f̂ ∶ R→ C, f̂ (ξ) = ∫
∞

−∞
f (x)e−2πixξ

dx

Decay properties of f ⟹ smoothness properties of f̂ :

If f is then f̂ is
Square integrable square integrable (Plancherel’s Theorem).

Absolutely integrable continuous (Riemann-Lebesgue lemma).

Rapidly decreasing smooth (Theory of Schwartz functions).

Exponentially decaying analytic in a strip.

Compactly supported entire and at most exponential growth
(Paley-Wiener theorem).

The last two relations can be seen as manifestations of the Uncertainty Principle:

f strongly localized in space⇒ f̂ widely dispersed in space,

i.e. f and f̂ cannot both decay too strongly at infinity unless f = 0.
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Quantum Theory: Impossible to measure position and momentum
simultaneously with arbitrary precision

Heisenberg Uncertainty Principle (1927):
Lower bound on volume occupied by particle in phase space σxσp ≥ 2h̵

σx small, but σp large σp small, but σx large

Mathematically speaking: If ∫ ∣f (x)∣2
dx = ∫ ∣f̂ ∣2

dξ = 1, then

(∫ ∣x∣2∣f (x)∣2
dx) ⋅ (∫ ∣ξ∣2∣f̂ (ξ)∣2

dξ) ≥ 1

(4π)2
.

If f (x) = e
−πax2

Gaussian ⟹ f̂ (ξ) = 1√
a
e
−πξ2/a

. Both decay faster than

exponentially. This is fastest possible simultaneous decay for f and f̂ !

Theorem (Hardy’s Uncertainty Principle)

Let ∣f (x)∣ ≤ Ce
−πax2

and ∣f̂ (ξ)∣ ≤ Ce
−πξ2/a

. Then f (x) is a scalar multiple e
−πax2

.
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Support condition: annihilating pairs [Nazarov’93, Jaming’07]

Let S,Σ ⊂ Rd
of finite Lebesgue measure and f ∈ L

2(Rd ). Then

∥f ∥2
2 ≤ Ce

C ∣S∣⋅∣Σ∣ (∫
Sc

∣f 2∣ + ∫
Σc

∣f̂ ∣2)

Thus S and Σ form an strongly annihilating pair.

We have seen different manifestations of Uncertainty Principle

▶ Lower bound on variance of (quantum mechanical particle) density.

▶ Lower bound tail decay of density.

▶ Lower bound on measure of supports of f and f̂ : At least one of infinite measure.
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Move now from holomophic functions to solutions of PDE

B(0, δ) ⊂ Λ1 = (−1/2, 1/2)d
for some δ ∈ (0, 1/2)

Consider
Schrödinger operator on cube Λ1 with bounded,
measurable potential V ∶Λ1 → R.

Quantitative Unique continuation
estimate
There ∃M =M(d) ∈ (0,∞), s. t. for all

▶ δ,K > 0.

▶ V ∶ Λ1 → [−K ,K]
▶ H = (−∆ + V )Λ1

▶ Dirichlet boundary conditions at ∂Λ1

▶ ψ ∈W
2,2
0 (Λ1;R), Hψ = 0

⟹ ∫
B(0,δ)

∣ψ∣2
≥ δ

M(1+K2/3) ∫
ΛL

∣ψ∣2

Normalize ∥ψ∥L2(Λ1) = 1:

Control of vanishing order in L
2
-sense/ quantitative unique continuation principle.

Actually, this is a simple case of a more powerful theorem, which we will present next.
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Retrieval of global properties from local data

Let Λ ⊂ Rd
be a region in space, S ⊂ Λ a subset, and f ∶Λ→ R.

What can one say about certain
properties of f ∶Λ→ R
given certain properties of
f ∣S ∶S → R?
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Let Λ ⊂ Rd
be a region in space, S ⊂ Λ a subset, and f ∶Λ→ R.

What can one say about certain
properties of f ∶Λ→ R
given certain properties of
f ∣S ∶S → R?
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f known on
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Geometrical aspect: Conditions to impose on subset S?

Notion of equidistributed subsets.

▶ a natural choice would be a periodic
arrangement of balls

▶ equidistributed set could be seen as a
generalization thereof

▶ small perturbations of periodic
arrangement should be included as well

▶ S relatively dense in Rd

e. g. Delone set

▶ S subset with positive density
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Scale-free unique continuation:
motivated by spectral theory of random Schrödinger operators

▶ ΛL = (−L/2,L/2)d

▶ SL(δ) = ΛL ∩
⎛
⎜
⎝
⋃

j∈Zd

B(xj , δ)
⎞
⎟
⎠

▶ HL = (−∆ + V )ΛL with Dirichlet
or periodic b.c. at ∂ΛL

Theorem [Rojas-Molina & Ves. 13]

There ∃M =M(d) ∈ (0,∞), s. t. for all

▶ δ,K > 0, L ∈ N
▶ H = (−∆ + V )Λ1 , V ∶Λ1 → [−K ,K]
▶ Dirichlet or periodic boundary conditions

at ∂Λ1

▶ ψ ∈W
2,2
0/per(Λ1;R), Hψ = 0

⟹ ∫
SL(δ)

ψ
2
≥ CUC ∫

ΛL

ψ
2
, CUC ∶= δ

M(1+K2/3)

quantitative dependence of CUC on parameters

▶ independent of position of
B(xj , δ) within Λ1 + j

▶ independent of scale L ∈ N
▶ depends on V only through ∥V∥∞

(on exponential scale)

▶ depends on δ > 0 polynomially,

CUC ≳ δ
N
, some N ∈ N
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Theorem holds for all eigenfunctions ψ

HLψ = Eψ⇔ (HL − E)ψ = 0

with possibly larger constant K = KV−E instead of K = KV .

Question [Rojas-Molina & Ves. 13]

True for linear combinations ψ ∈ Ranχ(−∞,E](HL) of eigenfunctions as well?

Theorem [Klein 13]

True for sufficiently small γ = b − a, depending on K , δ.

Sufficient for many questions in spectral theory of random Schrödinger operators.
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Theorem [Nakić, Täufer, Tautenhahn & Ves. 15, 16]

▶ ΛL = (−L/2,L/2)d

▶ SL(δ) = ΛL ∩
⎛
⎜
⎝
⋃

j∈Zd

B(xj , δ)
⎞
⎟
⎠

▶ HL = (−∆ + V )ΛL with Dirichlet
or periodic b.c. at ∂ΛL

Theorem
There ∃M0 =M0(d) such that for all

▶ δ > 0, E ≥ 0, L ∈ N,

▶ V ∶ Rd
→ [−KV ,KV ]

▶ ψk ∈W
2,2(ΛL), HLψk = Ekψk

▶ αk ∈ C, ψ = ∑

E−1≤

Ek≤E
αkψk

▶ (xj)j∈Zd ⊂ Rd
, B(xj , δ) ⊂ Λ1 + j

holds ∫
SL(δ)

∣ψ∣2
≥ CUC ∫

ΛL

∣ψ∣2

with

CUC = δ
M0(1+

√
E+K

2/3
V )

Restriction to Ek ∈ [E − 1,E] does not improve
estimate: Upper bound decisive.
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Application to lifting of eigenvalues

Lifting lemma [NTTV]

Let δ,Z ,L,SL(δ),V ,HL,E as above. Let α > 0 and UL ≥ αWL = αχSL(δ) Then

λi (HL + UL) ≥ λi (HL) + αCsfuc(d , δ,E ,∥VL + UL∥∞).

for

all eigenvalues (counted in increasing order, with multiplicities) satisfying

λi (−Ht
L + BL) ≤ E .
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Scaled version of NTTV Result

Scaling

Let G , t > 0, δ ∈ (0,G/2), Z = (xj)j∈(GZ)d ⊂ Rd
, s.t

B(xj , δ) ⊂ ΛG + j = [−G/2,G/2]d + j

Call sequence Z : (G , δ)-equidistributed

S(δ) = B(Z , δ) = ⋃j∈Zd B(xj , δ)
Let L ∈ GN, SL(δ) = ΛL ∩ S(δ),

V ∈ L
∞(Rd

,R)

Schrödinger operator H
t
L = −t∆ + V

on ΛL, L ∈ N, with Dirichlet, Neumann, or
periodic b.c.

Theorem [NTTV]

With K as above
∥ψ∥2

L2(SL(δ)) ≥ C
G ,t
sfuc∥ψ∥

2
L2(ΛL)

for any ψ = ∑
Ek≤E

αkψk ∈ ranχ(−∞,E](Ht
L) where

C
G ,t
sfuc = C

G ,t
sfuc(d , δ,E ,∥V∥∞) ∶= ( δ

G
)
K(1+G4/3∥V∥2/3

∞ /t2/3+G
√
E/t)

.
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Application to lifting of eigenvalues

Recall
Let G , t > 0, δ ∈ (0, 1/2), Z = (xj)j∈(GZ)d ⊂ Rd

, s.t

B(xj , δ) ⊂ ΛG + j = [−G/2,G/2]d + j

S(δ) = B(Z , δ) = ⋃j∈Zd B(xj , δ)
Let L ∈ GN, SL(δ) = ΛL ∩ S(δ), and WL = χSL(δ),
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,R)
Schrödinger operator H

t
L = −t∆ + V on ΛL, L ∈ N, with Dirichlet, Neumann, or

periodic b.c.

Lifting lemma [NTTV]

Let G , t, δ,Z ,L,SL(δ),V ,Ht
L,E as above. Let α > 0 and UL ≥ αWL = αχSL(δ) Then

λi (Ht
L + UL) ≥ λi (Ht

L) + αC
G ,t
sfuc(d , δ,E ,∥VL + UL∥∞).
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λi (−Ht
L + BL) ≤ E .
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Equidistribution property of eigenfunctions

Context in the spectral theory of random Schrödinger operators

Physical intuition of Anderson phase transition

localized energy regime delocalized energy regime

no propagation of wave packets propagation of wave packets

Poissonian behaviour of rescaled eigenvalues level repulsion

exponential/fast decay of eigenfunctions spread out eigensolutions

Our theorem about equidistribution of (linear combinations of) eigenfunctions is not
related to delocalization of eigensolutions, but an universal a-priori bound.

Interestingly, it is often used to when proving localization of eigenfunctions, which
might seem paradoxical at first sight.

The relevance of the scale free unique continuation principle is illustrated by the fact
that it has been studied before in numerous papers for particular situations.
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Previously results for particular settings

vanishing potential V ≡ 0 Kirsch 96: Brownian m. hitting probabilities
low energies 0 < E ≪ 1 Bourgain, Kenig 05: spatial averaging
individual eigenfunctions
periodic set Z
as above, but non-periodic Z Germinet 08: spatial averaging
similar, implicit results Boutet de Monvel, Naboko, Stollmann, Stolz 06
periodic V Kirsch, Stollmann, Stolz 98
energies at spectral edges Combes, Hislop, Nakamura 01
individual eigenfunctions
periodic set Z
eigenvalue lifting Boutet de Monvel, Lenz, Stollmann 11
implies uncertainty relation
at low energies
d = 1, periodic V and Z Veselic 96, Kirsch, Veselic 02
for individual eigenfunctions
extension to non-periodic V , Z Helm, Veselic 07
for spectral projectors Combes, Hislop, Klopp 03, 07
for periodic V and Z Floquet-theory & compactness
quantitative version Germinet, Klein 13
our setting but for individual eigenfunctions Rojas-Molina, Veselic 13
extension for spectral projection Klein 13
of short energy intervals

Extension to magnetic Schrödinger operators: Efficient bounds only for bounded
vector potentials.
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Various names for such results

▶ scale free unique continuation principle:
quantitative version of unique continuation principle, uniform on all large scales

▶ uncertainty relation:
condition ψ ∈ ranχ(−∞,E](HL) in momentum/Fourier-space enforces
delocalization/flatness in direct space

▶ gain of positive definiteness:
selfadjoint operator W ≥ 0 has kernel
for spectral projector P of Hamiltonian:
restriction PW P ≥ c P is strictly positive

▶ in control theory: observability estimate or spectral inequality

Indirect relation to

▶ quantum ergodicity:
equidistribution property of (properly chosen combinations of) eigenfunctions:

comparison of measure ∣ψ(x)∣2
dx with uniform distribution

Our result: worst case scenario for arbitrarily chosen linear combinations of
eigenfunctions

▶ uniform uncertainty principle or restricted isometry property in compressed
sensing and sparse recovery
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Application to control theory of our scale free observability estimate

Consider heat equation with control function v :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ty −∆y = 1Sv in Ω × (0,T )
y = 0 on ∂Ω × (0,T )
y(0) = y0 in Ω

Null-controlability: for each T > 0 there exists a C(T ) such that for all y0 ∈ L
2(Ω)

exists control v ∈ L
2((0,T ) ×Ω) with

y(T ) = 0 and ∥v∥L2((0,T )×Ω) ≤ C(T )∥y0∥L2(Ω).

Our setting:

Ω = ΛL, S =Wδ(L)

⇒ scale-free null-controlability
(C(T ) is L-independent)
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Variable coefficient 2nd order partial differential operator

Class considered
Let d ∈ N and L be the differential expression for x ∈ Rd

.

Lu ∶= −
d

∑
i,j=1

∂i (aij∂ju)

satisfying

▶ symmetry condition a
ij(x) = a

ji (x) for all i , j ∈ {1, . . . , d}

▶ ellipticity condition θ
−1∣ξ∣2

≤

d

∑
i,j=1

a
ij(x)ξiξj ≤ θ∣ξ∣2

▶ Lipschitz condition
d

∑
i,j=1

∣aij(x) − a
ij(y)∣ ≤ t∣x − y∣
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Partial result for variable coefficient divergence type operators

Theorem [Borisov, Tautenhahn & Ves. 15]

Assume that
d

2
⋅ θ

6
1 ⋅ θ2 < 1/(99 ⋅ e).

Then for all measurable and bounded V ∶ Rd
→ R, all ψ ∈W

2,2(Rd ) satisfying

∣Lψ∣ ≤ ∣Vψ∣ almost everywhere on Rd
, all δ ∈ (0, 1/2) and all (1, δ)-equidistributed

sequences we have

∥ψ∥2
Sδ ≥ csfuc∥ψ∥2

Rd ,

where

csfuc = d1 ( δ
d2

)
d3(1+∥V∥2/3

∞ +∥b∥2
∞+∥c∥

2/3
∞ )−d4

with d1, . . . , d4 depending only on d , θ1, θ2.
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Carleman estimates

▶ allow to deduce ucp (after some calculations)

▶ whole zoo of Carleman estimates exists

▶ many with abstract weight functions
(satisfying Hörmanders subellipticity condition)

▶ we want explicit estimate, thus explicit weight function

We start with a formulation of [Bourgain, Kenig 05] since this has given crucial
stimulus to the theory of random Schrödinger operators.
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Carleman estimate as formulated in [Bourgain, Kenig 05]

Weight function

φ∶ [0,∞)→ [0,∞)
φ(r) =

r exp(−∫
r

0

1 − e
−t

t dt)

w ∶Rd
→ [0,∞), w(x) = φ(∣x∣)

r

1/φ(r)

⇒ ∀ r ∈ (0, 1) ∶ r/3 ≤ φ(r) ≤ r

Theorem [Bourgain & Kenig 05]

There are constants C1(d) and C2(d) ∈ [1,∞) s. t. for all α ≥ C1 and real valued

f ∈ C
2(B(0, 1)) with compact support in B(0, 1) \ {0} we have

α
3 ∫ w

−1−2α
f

2
dx ≤ C2 ∫ w

2−2α (∆f )2
dx

Concise, clear proof.

Following ideas of [Escauriaza & Vessella 03] for parabolic case with variable
coefficients. Short proofs. Somewhat clearer with the help of Morassi, Rosset, &
Vessella 11

Possible to scale the inequality to a ball of radius ρ and extend to Sobolev space H
2
.
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Consequences/Applications of Carleman estimates

Theorem [Bourgain & Klein 13]

Let Λ ⊂ Rd
open, V ∶Λ→ R measurable, bounded, ψ ∈W

2,2(Λ,R) satisfying
−∆ψ + Vψ = 0 a.s. For Θ ⊂ Λ bounded, measurable set

Q(x ,Θ) ∶= sup
y∈Θ

∣y − x∣ for x ∈ Λ \ Θ

If Q = Q(x0,Θ) ≥ 1, dist(x0,Θ) > 0, B(x0, 6Q + 2) ⊂ Λ and
0 < δ ≤ min{dist(x0,Θ), 1/24}, then

∥ψ∥2
L2(Θ) ≤ (Q

δ
)
K(1+∥V∥2/3

∞ )(Q4/3+log
∥ψ∥

L2(Λ)
∥ψ∥

L2(Θ)
)
∥ψ∥2

L2(B(x0,δ))

where K > 0 depends only on d .

Analogous results in [Germinet & Klein 13], [Rojas-Molina & Veselić 13]
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Geometric assumptions

B(x0, δ)

Θ

Q

6Q + 2R

Λ
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Theorem [Bourgain & Klein 13]

Let Λ ⊂ Rd
open, V ∶Λ→ R measurable, bounded, ψ ∈W

2,2(Λ,R) satisfying
−∆ψ + Vψ = 0 a.s. For Θ ⊂ Λ bounded, measurable set where ∥ψ∥L2(Θ) > 0. Set

Q(x ,Θ) ∶= sup
y∈Θ

∣y − x∣ for x ∈ Λ \ Θ

If Q = Q(x0,Θ) ≥ 1, dist(x0,Θ) > 0, B(x0, 6Q + 2) ⊂ Λ and
0 < δ ≤ min{dist(x0,Θ), 1/24}, then

∥ψ∥2
L2(Θ)

∥ψ∥2
L2(B(x0,δ))

≤ (Q
δ
)
K(1+∥V∥2/3

∞ )(Q4/3+log
∥ψ∥

L2(Λ)
∥ψ∥

L2(Θ)
)

where K > 0 depends only on d .

To bound quotient of two local L
2
-norms

∥ψ∥L2(Θ)
∥ψ∥L2(B(x0,δ))

we need info on another such quotient!

∥ψ∥L2(Λ)
∥ψ∥L2(Θ)

If an estimate on the latter is not provided a-priori, one might wonder, whether one is
running in a vicious circle or an induction without induction anchor.
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Where to get an a-priori bound?

One bound we can get by normalization: ∥ψ∥L2(Λ) = 1

On average we have for each of the L
d

unit boxes ∥ψ∥L2(Λ1+j) ∼ L
−d

∥ψ∥L2(Λ1+j) ≥
1
2
L
−d

Criterion introduced in [Rojas-Molina, Veselic 13]

The last inequality will hold for some boxed (dominating ones)
and not for others (weak boxes)

There are sufficiently many dominating boxes such that

∑
j,dominating

∫
Λ1(j)

∣ψ∣2
≥

1

2
∫

ΛL

∣ψ∣2

Uses

Lemma (A reverse Markov inequality)

Let N,T ∈ N and µ be a probability measure on N ∶= {1, ...,N}. Set

A ∶= {n ∈ N ∣ µ(n) ≤ 1
T

1
N
}. Then µ(A) ≤ 1/T .

Actually, dominating and weak boxes are defined in terms of an intermediate scale
1 ≤ T = T (d)≪ L.
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Consequences/Applications of Carleman estimates: Three annuli inequality

A1

A2

A3

A1A1 A2A2 A3A3

Insert

χ × ψ = cut-off × eigenfunction

in Carleman inequality
(e.g. [Bourgain, Kenig 05])
to get three annuli inequality

α
3 ∫

A2

w
2−2α∣ψ∣2

≲ ∫
A1

w
2−2α∣ψ∣2

+ ∫
A3

w
2−2α∣ψ∣2

.

profile of cut-off function χ
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Application of 3 annuli inequality to equidistribution of an eigenfunction

α
3 ∫

A2

w
2−2α∣ψ∣2

≲ ∫
A1

w
2−2α∣ψ∣2

+ ∫
A3

w
2−2α∣ψ∣2

.

A3

A2

A1

Choice of radii (widths and gaps)

r1 = δ/8, r2 = 1, r3 = 6e
√
d ,

R1 = δ/4, R2 = 3
√
d , R3 = 9e

√
d ,

Ai = B(Ri ) \ B(ri ), i ∈ {1, 2, 3}

Bounds on the weight function ∣x∣/(eR3) ≤ w(x) ≤ ∣x∣/R3 imply

α
3 (R3

R2
)

2α−2

∫
A2

∣ψ∣2
≲ ( eR3

r1
)

2α−2

∫
A1

∣ψ∣2
+ ( eR3

r3
)

2α−2

∫
A3

∣ψ∣2

Apply this to the translated sets Ai + xj and sum up!
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Application of 3 annuli inequality to equidistribution of an eigenfunction

α
3 ∫

A2

w
2−2α∣ψ∣2

≲ ∫
A1

w
2−2α∣ψ∣2

+ ∫
A3

w
2−2α∣ψ∣2

.

A3

A2

A1

Choice of radii (widths and gaps)

r1 = δ/8, r2 = 1, r3 = 6e
√
d ,

R1 = δ/4, R2 = 3
√
d , R3 = 9e

√
d ,

Ai = B(Ri ) \ B(ri ), i ∈ {1, 2, 3}

Bounds on the weight function ∣x∣/(eR3) ≤ w(x) ≤ ∣x∣/R3 imply

α
3 (R3

R2
)

2α−2

∫
A2

∣ψ∣2
≲ ( eR3

r1
)

2α−2

∫
A1

∣ψ∣2
+ ( eR3

r3
)

2α−2

∫
A3

∣ψ∣2

Apply this to the translated sets Ai + xj and sum up!



53
Application of 3 annuli inequality to equidistribution of an eigenfunction
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Application of 3 annuli inequality to equidistribution of an eigenfunction
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α
3 (R3

R2
)

2α−2

∑
j

∥ψ∥2
A2+xj ≲ ( eR3

r1
)

2α−2

∑
j

∥ψ∥2
A1+xj + ( eR3

r3
)

2α−2

∑
j

∥ψ∥2
A3+xj

A2

Covering argument gives

∑
j

∥ψ∥2
A2+xj ≥ ∥ψ∥2

Λ

∑
j

∥ψ∥2
A1+xj ≤ ∥ψ∥2

Sδ

∑
j

∥ψ∥2
A3+xj ≤ Kd∥ψ∥2

Λ

Kd combinatorial factor
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α
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α
3 (R3

R2
)

2α−2

∥ψ∥2
Λ ≲ ( eR3

r1
)

2α−2

∥ψ∥2
Sδ + ( eR3

r3
)

2α−2

Kd∥ψ∥2
Λ.
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α
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α
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)

2α−2

∥ψ∥2
Λ ≲ ( eR3

r1
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α
3(R3

R2
)

2α−2

∥ψ∥2
Λ ≲ ( eR3

r1
)

2α−2

∥ψ∥2
Sδ + ( eR3

r3
)

2α−2

Kd∥ψ∥2
Λ.

Choice of gaps between annuli ensures

(R3

R2
)

2α−2

≫ ( eR3

r3
)

2α−2

thus for large α

∥ψ∥2
Λ ≲ ( eR2

r1
)

2α−2

∥ψ∥2
Sδ

= (24e
√
d

δ
)

2α−2

∥ψ∥2
Sδ
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α
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Uniform Uncertainty Principles and restricted isometry constants

Retrieval of global properties from local data

Let Λ ⊂ Rd
be a region in space, S ⊂ Λ a subset, and f ∶Λ→ R.

What can one say about certain
properties of f ∶Λ→ R
given certain properties of
f ∣S ∶S → R?

certain properties of
f known on
equidistributed S ⊂ Λ

certain properties of
f on whole of Λ
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Uniform Uncertainty Principles and restricted isometry constants
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Uniform Uncertainty Principles and restricted isometry constants

Retrieval of global properties from local data

Let Λ ⊂ Rd
be a region in space, S ⊂ Λ a subset, and f ∶Λ→ R.

What can one say about certain
properties of f ∶Λ→ R
given certain properties of
f ∣S ∶S → R?

certain properties of
f known on
equidistributed S ⊂ Λ

rigidity/sparsity
properties of f

certain properties of
f on whole of Λ
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Uniform Uncertainty Principles and restricted isometry constants

Definition
Let D,m, s ∈ N, matrix B∶RD

→ Rm
, and s ≤ D, (typically: D ≫ m). If

(1 − δs)∥y∥2
≤ ∥By∥2

≤ (1 + δs)∥y∥2
(1)

for all y ∈ RD
with ♯ supp y ≤ s, then δs is called a restricted isometry constant (for s

and B).

Lemma [Candes, Romberg, Tao ’06]

Let D,m, s and B be as above with 1 − δs > 0. Let x ∈ RD
with ♯ supp x ≤ s and

f ∶= Bx . Then the unique minimizer of

(P0) min
y∈RD ;By=f

♯ supp y

equals x .

Program (P0) has high complexity and needs to be replaced by a convex program.
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Uniform Uncertainty Principles and restricted isometry constants

Theorem [Candes, Romberg, Tao ’06]

Let D,m, s ∈ N, ε ≥ 0, and B∶RD
→ Rm

such that δ3s + 3δ4s < 2. Assume that

x ∈ RD
and e ∈ Rm

satisfy ♯ supp x ≤ s and ∥e∥2 ≤ ε. Set f ∶= Bx + e. Then the
solution ξ of the convex optimization problem

(P2) min
y∈CD ;∥By−f ∥2≤ε

∥y∥1

obeys
∥ξ − x∥2 ≤ C(δ4s) ⋅ ε

Condition δ3s + 3δ4s < 2 has been relaxed since, see [Foucart, Rauhut 13]

It turns out that this result is stable under small perturbations of x where the support
condition is violated.

Truncated vectors
For x ∈ RD

and s < D denote by xs ∈ RD
the vector where the D − s coefficients

closest to zero have been set equal to zero.
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Stability

Truncated vectors
For x ∈ RD

and s < D denote by xs ∈ RD
the vector where the D − s coefficients

closest to zero have been set equal to zero.

Theorem [Candes, Romberg, Tao ’06]

Let D,m, s ∈ N, ε ≥ 0, x ∈ RD
, e ∈ Rm

, and B∶RD
→ Rn

such that δ3s + 3δ4s < 2.
Assume that ∥e∥2 ≤ ε. Set f ∶= Bx + e. Then the solution ξ of

(P2) min
y∈CD ;∥By−f ∥2≤ε

∥y∥1

obeys

∥ξ − x∥2 ≤ C1 ⋅ ε + C2
∥x − xs∥1√

s

where C1 and C2 depend only on δ4s .
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Matrix ensembles with uniform Uncertainty Principles

No efficient deterministic way known to construct matrices satisfying uniform
Uncertainty Principle of arbitrary size, but probabilistic ones:

Definition
Let D,m, s ∈ N, B∶RD

→ Rm
, and s ≤ D, (typically: D ≫ n). If

(1 − δs)∥y∥2
≤ ∥By∥2

≤ (1 + δs)∥y∥2
(2)

for all y ∈ RD
with supp y ≤ s, then δs is called a restricted isometry constant (for s

and B).

Fourier ensemble
Let F be the D ×D discrete Fourier transform matrix. Select m rows randomly, and
normalise each column, to obtain B. Then uniform Uncertainty Principle holds with
probability very close to one if

s ≤ const.
m

(logD)6
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Analogs in ∞ dimensions?: Logvinenko-Sereda Theorem

Let S ⊂ R be measurable and γ, a > 0 such that, for all intervals I ⊂ R of length a

∣S ∩ I ∣ ≥ γ ⋅ a a is a scale, γ a density.

Then S is called (γ, a)-thick.

Theorem [Logvinenko-Sereda ’74]

Let p ∈ [1,∞] and J ⊂ R be an interval of length b > 0. Let f ∈ L
p(R) with f̂

supported in J. Then
C(ab, γ) ∥f ∥p ≤ ∥χS f ∥p

Logvinenko-Sereda: C(ab, γ) = exp ( − c 1+ab
γ

)

Kovrijkine’01: C(ab, γ) = ( γ
c
)
c(1+ab)

Kovrijkine-Logvinenko-Sereda Theorem [Kovrijkine ’01]

Let p ∈ [1,∞] and J1, . . . , Jn ⊂ R be intervals of length b > 0. Let f ∈ L
p(R) with f̂

supported in J1 ∪ . . . ∪ Jn. Then

C ∥f ∥p ≤ ∥χS f ∥p , C = (γc )
ab( c

γ
)n+n

.
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Reformulation as Uniform Uncertainty Principle

Reformulation of Kovrijkine’s Theorem

Fix γ, a, b > 0, n ∈ N. Let B∶L2(R)→ L
2(R) be the multiplication operator with the

characteristic function of a (γ, a)-thick set. For an interval J of length b set

L̂(J) ∶= {f ∈ L
2(R)∣ supp f̂ ⊂ J}. While B is not injective, we have

(γc )
ab(c/γ)n+n

∥ψ∥2 ≤ ∥B ψ∥2 ≤ ∥ψ∥2 (3)

for all ψ ∈ ⋃
n

�
k=1

L̂(Jl ), where the union runs over all n-tuples J1, . . . , Jn ⊂ R of

intervals of length b each.

ψ is ‘sparse’ in Fourier representation.

None of the subspaces L̂(Jk) has finite dimension, but they are all unitarily equivalent.
In particular, the constant c in (3) does not depend on the positions of the intervals
Jk .

Kovrijkine obtained also analogous results in higher dimensions d ∈ N
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Finite interval/torus: Finite dimensional subspaces

Configuration space Td
L of size L > 0 and dimension d ∈ N.

Theorem [Egidi & Ves. ’16]

Let f ∈ L
p(Td

L) with p ∈ [1,∞] such that supp f̂ ⊂ J, where J is a box in Rd
with side

lengths b1, . . . , bd , set b = (b1, . . . , bd ). Let S ⊂ Rd
be a (γ, a)-thick set with

a = (a1, . . . , ad ) such that 0 < aj ≤ 2πL for all j = 1, . . . , d . Then,

( γ
cd1

)
c2a⋅b+

4d+1
p ∥f ∥Lp(Td

L )
≤ ∥f ∥Lp(S∩Td

L )
≤ ∥f ∥Lp(Td

L )
, (4)

where c1, c2 are universal constants.

Version for several boxes
Let f ∈ L

p(Td
L) with p ∈ [1,∞]. Assume that supp f̂ ⊂ ⋃n

l=1 Jl , where Jl are boxes in

Rd
with sides of length b1, . . . , bd . Let E ⊂ Rd

be a (γ, a)-thick set with
a = (a1, . . . , an) such that 0 < aj ≤ 2πL for all j = 1, . . . , d . Then,

( γ
c̃1

)
( c̃

d
2
γ
)n∑d

j=1 ajbj+n∥f ∥Lp(Td
L )
≤ ∥f ∥Lp(E∩Td

L )
, (5)

where c̃1 and c̃2 are universal constants.

In particular the estimates are scale-free in the sense that they do not depend on the
size L of the torus.
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Finite interval/torus: Finite dimensional subspaces

Configuration space Td
L of size L > 0 and dimension d ∈ N.

Theorem [Egidi & Ves. ’16]

Let f ∈ L
p(Td

L) with p ∈ [1,∞] such that supp f̂ ⊂ J, where J is a box in Rd
with side

lengths b1, . . . , bd , set b = (b1, . . . , bd ). Let S ⊂ Rd
be a (γ, a)-thick set with

a = (a1, . . . , ad ) such that 0 < aj ≤ 2πL for all j = 1, . . . , d . Then,

( γ
cd1

)
c2a⋅b+

4d+1
p ∥f ∥Lp(Td

L )
≤ ∥f ∥Lp(S∩Td

L )
≤ ∥f ∥Lp(Td

L )
, (4)

where c1, c2 are universal constants.

Version for several boxes
Let f ∈ L

p(Td
L) with p ∈ [1,∞]. Assume that supp f̂ ⊂ ⋃n

l=1 Jl , where Jl are boxes in

Rd
with sides of length b1, . . . , bd . Let E ⊂ Rd

be a (γ, a)-thick set with
a = (a1, . . . , an) such that 0 < aj ≤ 2πL for all j = 1, . . . , d . Then,

( γ
c̃1

)
( c̃

d
2
γ
)n∑d

j=1 ajbj+n∥f ∥Lp(Td
L )
≤ ∥f ∥Lp(E∩Td

L )
, (5)

where c̃1 and c̃2 are universal constants.

In particular the estimates are scale-free in the sense that they do not depend on the
size L of the torus.
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Relation to compressed sensing

We obtained a restricted isometry property or Uniform Uncertainty Principle in in

L
2(TL), however the restricted isometry constant:

δ = 1 − ( γ
c̃1

)
( c̃

d
2
γ
)n∑d

j=1 ajbj+n

is very close to one and not to zero ⟹ to large to apply method of Candes and Tao.

However, we expected this. Otherwise the result would be to good to be true:
extension to infinite dimensional space without probabilistic error.

Are there at all instances where the reconstruction above mentioned method works in
infinite dimensions?

Yes, under additional assumptions, see e.g.

▶ [Donoho & Logan] Set E is very thick with density γ close to one.

▶ [Jean-Pierre Kahane] Fourier-coefficients satisfy lacunary gap condition

Future objectives:

▶ Provide a unified framework incorporating methods of Logvinenko & Sereda,
Kovrijkine, Donoho & Logan, Kahane.

▶ Generalize to solutions of PDE.

Thank you for your attention!
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